THE EXPERT’S VOICE® IN JAVA" TECHNOLOGY |

Practical

JB0SS' Seam
Projects

Get hands-on experience with JBoss® Seam, an
open source agile enterprise JSF™-EJB™ 3-based
contextual application framework.

Jim Farley

Apress:

Practical JBoss® Seam
Projects

Jim Farley

Apress-

863-6 FM 2P.gxd 7/20/07 8:26 AM Page ii $

Practical JBoss® Seam Projects
Copyright © 2007 by Jim Farley

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-863-4
ISBN-10 (pbk): 1-59059-863-6
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin

Technical Reviewer: Floyd Carver

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole Flores

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Elizabeth Berry

Compositor: Gina Rexrode

Proofreader: Nancy Riddiough

Indexer: Julie Grady

Artist: April Milne

Cover Designer: Kurt Krames

Author Cover Photo: Sandra Mallalieu

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

This book is dedicated to Madeline. The world is better for her time in it.

Contents at a Glance

Aboutthe AUThOr ... o Xiii
About the Technical ReVIEWET i e XV
Acknowledgments Xvii
INtrodUCHIONo Xix
CHAPTER 1 IntroducingSeam............. 1
CHAPTER 2 Seam Configuration and Administration 21
CHAPTER 3 Component Fundamentals 39
CHAPTER 4 Contexts and Conversations.................................... 67
CHAPTER 5 Structured Pageflow... 99
CHAPTER 6 Security......... 127
CHAPTER 7 Business Process Management 159
CHAPTER8 RichWeb Clients.. 193

Contents

Aboutthe AUThOr ... o Xiii
About the Technical ReVIEWET i e XV
Acknowledgments Xvii
INtrodUCHIONo Xix
CHAPTER1 IntroducingSeam.. 1
Seam Simplifies JavaEEl 1

The Seam ComponentModel 3

Running Example: A Gadget Catalog 4

The Gadget Catalog Without Seam............................. 5

The Gadget Catalog with JBoss Seam......................... 15
SeamExtendsJavaEE............... 16

Seam Component Services ... 16

Integrated Pageflow with jPDL 18

Integrated Business Processes with jBPM and JBoss Rules 18

Rich Internet Applications (akaWeb 2.0)....................... 19

Read On...... ... 19

SUMMArY ... 20

CHAPTER 2 Seam Configuration and Administration 21
Preparing the Application Server 21

Javab5.0Required 21

JavaServer Faces. 22

Enterprise JavaBeans 3.0.............l 22

Configuring JBOSS 4 25

Installation in a Generic Java EE 5.0 Environment............... 26

Installation in a Generic J2EE 1.4 Environment 28

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Configuring a Seam Application ol 28
Install Seam Core Libraries 29
Configure Facelets. i 30
Web Component Configuration 31
EJB Component Configuration................................ 33
Seam Configuration Files............., 33

SUMMANY ... 37

Component Fundamentals 39

Seam Component TYPES.ot 39
FormBackingBeans................. ... 40
Action Listeners............. ... 41
Browser-Accessible Components............................. 4

Extending the Gadget Catalog: Managing Types 42

Component Services. 43
Component Name Binding................. ...t 43
Life Cycle and Callbacks.coooiiiiiiat 47
Using EJBs As JSF ManagedBeans........................... 49
Bijection. 60

SUMMANY .. 66

Contexts and Conversations 67

Seam ComponentContexts. ..., 67
Seam Contexts and the JSF Life Cycle......................... 69

Gadget Catalog: Conversational Gadgets 72

Conversation BasiCst 74
The Motivation for Conversations............................. 74
Conversations and Other Contexts............................ 75
Conversation Life Cycleoooiiiiiinas. 75
Implicit vs. Explicit Conversations............................. 77
Starting and Ending Conversations. 78

Joining Conversationsc. i 88

Nesting Conversations i, 90

Workspaces: Managing Concurrent Conversations................... 93

SUMMANY ... 98

CHAPTER 5

CHAPTER 6

CONTENTS

Structured Pageflow.. 99
The Basics of Pageflow with jPDL 100
The Language of PDL., 100
When to Use jBPM Pageflow, 103
Gadget Catalog: The “New Gadget” Wizard 105
Seam’s PageflowModel........................ 106
Configuring jPDL Pageflowst 106
Making Sense of “Pages” in Seam, jBPM,and JSF............. 107
Initiating Pageflows. ... 108
Starting Pageflows with Annotations 109
Starting Pageflows with Page Links.......................... 111
Defining Page Nodes and Transitions.............................. 113
Conditional Flow. 117
Managing the Back Button.................................. 119
Ending Pageflows 121
Advantages of jPDL.............. o i 122
Flexible Pageflow Through Encapsulation..................... 122
Expressiveness of jPDL.. ..., 124
SUMMArY 124
Security............... 127
Seam Security Support. 127
Authentication 127
Authorization. 128
Seam Security vs. Java EE SecurityL 128
Gadget Catalog: Expansion Through Security. 129
User Interface Access Control 130
Data Model Changes. ... 131
Configuring Seam Security 132
Minimal Configuration. 132
Security ELExpressions il 133

JBOSS RUIBS ... 134

ix

X CONTENTS

CHAPTER 7

Authentication Services 134
Enabling the Authentication Services......................... 134
Creating the Login Form................ 135
Creating the LoginHandler 137
Adding Login and Logout Links. 142
RestrictingPages..................o o i 143
Handling Authentication Exceptions.......................... 144
Making a Smarter Login.o 145

Authorization Services 146
Assigning Rolesto Users 147
Specifying Page AccessRights 150
Component-Level Restrictions. 151
Advanced Authorizationl 153

SUMMANY .. 156

Business Process Management........................... 159

Business Processes, jBPM, and Seam............................. 159
Business Process Concepts. ...l 159
Business Processes + Java=jBPM.......................... 161
Integration of BPM and Seam............................... 165

Gadget Catalog: Verifying New Gadgets 167

Configuring BPMinSeam............ ..., 170
Avoiding Conflicts with JBoss Transaction Management 171
Setting the Hibernate DataSource. 173

Defining Process Flows i i 174

Starting @ Business Process ..o, 177

Business ProcessData......................, 178

Executing Tasks. ... 183
Assigning TaskstoUsers ..., 183
Startingand Ending Tasksl 188

SUMMANY ... 191

CHAPTER 8

CONTENTS

RichWebClients.. 193
WhatlsaRichWeb Client? 193
Seam’s Remoting Serviceso 194
Gadget Catalog: Improving the User Experience 196
Configuring Seam Remoting i, 196
Server-Side Configuration 196
Client-Side Configuration..................., 197
Enabling Access to Server Components 198
Basic Java Type Mappings. ..., 198
Executable Stubs.......... 199
Type Stubs 207
The Seam JavaScript Object..................., 208
Seam.Componentl 208
Seam.BRemoting 209
Implementing the Auto-Complete SearchBox...................... 210
Integration with AJAX Libraries.............. ...t 214
SUMMANY ... 217

Xi

About the Author

JIM FARLEY is a technology architect, strategist, writer, and
manager. His career has touched a wide array of domains, from
commercial to nonprofit, finance to higher education. Jim is cur-
rently a program manager at Pearson PLC and teaches enterprise
development at Harvard’s Extension School. Jim is the author of
Java Distributed Computing and coauthor of three editions of Java
Enterprise in a Nutshell, and contributes articles and commentary
to various online and print publications.

xiii

About the Technical Reviewer

FLOYD CARVER has been building software systems for over 20 years.
During this time, he has performed in many roles, from developer to

He has worked in the scientific, chemical, telecommunications, and
retail industries for various-size companies, including Fortune 50
companies. He is currently providing consultant services as an
applications architect. When not consulting, Floyd enjoys traveling,
playing sports, and coaching for his community youth athletic
association.

architect. Floyd’s work has crossed several industries and continents.

Xv

Acknowledgments

I’d first like to thank Gary Cornell, whose encouragement (bordering on nagging) started
the efforts that eventually led to this book.

I'd also like to acknowledge the impressive editing and production team at Apress for
their work on this book. In order of appearance, Steve Anglin, Kylie Johnston, Ami Knox,
Elizabeth Berry, and a cast of others whose names are unknown to me shepherded this
work and its author from the beginning, lending their talents and professionalism to it all
along the way.

Finally, I have to thank my wife, Sandra Mallalieu, and my family, for tolerating yet
another writing project and the preoccupation that it inevitably becomes.

Xvii

Introduction

This book is a practical guide to JBoss Seam, a framework aimed at enhancing the devel-
opment of Java EE applications. The goal of the book is to get you up to speed with Seam
as quickly as possible by introducing the core Seam framework and key additional fea-
tures, following a practical, projects-oriented approach.

Who This Book Is For

This book was written with enterprise Java developers in mind, especially enterprise Java
developers who are hungry for a framework that will make their work easier. JBoss Seam
is aimed squarely at this audience, and this book, as a guide to Seam, inherits its target
demographic.

I wrote this book assuming that the reader is already proficient in Java programming,
has done some web application programming (using Java or other environments), and is
familiar (to some degree) with some of the key Java EE tools and APIs, such as JavaServer
Faces (JSF), Enterprise JavaBeans (EJB) 3.0, and so forth. If you don’t already know Java,
you'll find it very difficult (but not impossible) to follow the material here. If you know Java
but haven't tried your hand at web application development, you should be able to follow
along, but some of the motivations for the Seam contextual component model, and for the
various Seam services, may not be very apparent to you. If you're not familiar with JSE
EJB 3.0, and the other Java EE tools, you should be able to follow the material with just a
few bumps in terms of specific technical details related to these tools.

How This Book Is Structured

The book is structured around the incremental development of a sample application

(the “Gadget Catalog”). As we walk through the fundamentals of Seam and the framework
services that it provides, we gradually integrate new capabilities into the Gadget Catalog
using these Seam features. This provides you with a view of the practical issues involved
in using Seam, as you watch a realistic web application unfold from chapter to chapter.
Alternatively, if you decide to jump around and read about specific services of interest to
you, the discussion in each chapter highlights the specific parts of the application that
are affected by the integration of the specific service. So whether you decide to read the
book in sequence or go “nonlinear,” you should find that the material and the examples
serve as an effective guide.

Xix

XX

INTRODUCTION

The first four chapters of the book cover the fundamentals of JBoss Seam, and really
should be read whether you plan to use any of the other Seam services (security, page-
flow, etc.) or not. The first chapter is an introduction to the overall framework and the
model that Seam uses as the backdrop for all of its runtime services. The second chapter
is a primer on installing and configuring Seam in your application and application server.
The third chapter discusses the unified component model that Seam provides, bridging
JavaBeans, JSF managed beans, and EJB 3.0 components. The fourth chapter discusses
the runtime contextual model that Seam supports, especially the powerful concept of
conversations that Seam introduces to web programming.

The last four chapters discuss a set of key services that are provided in the Seam
framework. These services are pageflow support, security, business process manage-
ment, and rich web client (i.e., AJAX) support. This is not an exhaustive coverage of the
services included in Seam—there are several others that are not discussed here, such as
e-mail support, PDF generation, and so on. I wanted to keep this book short and focused,
so these four areas of the Seam framework were included because they are likely to be
interesting to many readers, and they serve well as a backdrop (along with the first four
chapters) for studying the remaining Seam services if you find them useful.

Prerequisites

The examples in this book were developed using JBoss Seam 1.2.1, the latest released
version at the time of this writing. Certain configuration and code details will not work cor-
rectly in earlier versions of Seam, so please be sure you are using version 1.2.1 before trying
out any of the examples. The examples were deployed to JBoss Application Server 4.0.5,
with the exception of the “vanilla” Java EE example in Chapter 1, which was deployed to the
Glassfish 1.0 application server. In theory, the examples should be deployable to other J2EE
1.4 or Java EE 5.0 application servers (as discussed in Chapter 2), but the example code has
not been tested in any other environments.

In order to build and run the examples in the book, you will need a Java 5.0 (or later)
environment and Apache Ant 1.6.5 (or later) to use the build scripts.

Downloading and Running the Code

All of the example code for the book can be found on the Apress web site, at http://
www.apress.com in the Source Code/Downloads section. The code is arranged into
separate directories for each chapter. Each chapter’s code directory contains its own
version of the Gadget Catalog application, with an Ant build script that you can use to
deploy the application to your application server.

http://www.apress.com
http://www.apress.com

INTRODUCTION xxi

In most cases, you should be able to deploy the code by simply setting the jboss . home
and lib.dir properties in build.properties, and running the deploy-app target in the build
script.

Contacting the Author

You can contact Jim Farley at jim@jimfarley.org.

mailto:jim@jimfarley.org

CHAPTER 1

Introducing Seam

The first thing to understand about Seam is that it’s a framework. Actually, it’s a frame-
work that sits on top of another framework (Java EE), and that framework sits on top of
another one (Java). But don’t get distracted by that just yet.

That word “framework” is a broad one, adopting many meanings depending on how
it's used (and who is using it). In this case, I mean “framework” in a typical software tech-
nology sense: Seam knits together a set of APIs and services into an environment that
makes it easy (or easier) to write Java EE web applications.

A framework typically “makes it easier” to do something by simplifying common
tasks and providing built-in utilities that you'd otherwise have to write yourself. Seam
is no different. Seam is based on Java EE, so it satisfies its framework duties in two
fundamental ways:

» Seam simplifies Java EE: Seam provides a number of shortcuts and simplifications
to the standard Java EE framework, making it even easier to effectively use Java EE
web and business components.

e Seam extends Java EE: Seam integrates a number of new concepts and tools into
the Java EE framework. These extensions bring new functionality within the Java
EE framework.

You'll get familiar with Seam in this chapter by briefly examining each of these
aspects. In the rest of this chapter, I'll list for you the various services and utilities that
Seam provides. In the chapters that follow, you'll see these services in action directly,
applied in application development cases.

Seam Simplifies Java EE

The standard Java EE environment consists of the Java Standard Edition (Java SE) with all
of its APIs (JDBC for database access, JAXP for XML processing, etc.) supporting all of the
enterprise-level capabilities of Java EE (JSF/JSP/servlets for web components, JAX-WS for
web services, etc.). Your application components are then built directly on top of this
overall framework, as depicted in Figure 1-1.

2

CHAPTER 1 " INTRODUCING SEAM

Application Components

JSF JSP/ JAX-WS EJB3/JPA
Servlets

Java Enterprise Edition (Java EE)

JNDI RMI JAXP JDBC

Java Standard Edition (Java SE)

Figure 1-1. Standard Java EE framework

In addition to the APIs and component types depicted in Figure 1-1, Java EE also
provides the deployment services, runtime security, and other services you need to create
effective applications. And Java EE provides a number of improvements over its

predecessor framework, J2EE, for example:

e Java 5.0 annotations are integrated liberally throughout the APIs in Java EE, giving
you the option of using either externalized XML deployment data or embedded

code annotations.

* The JavaServer Faces (JSF) 1.2, Java API for XML-based Web Services (JAX-WS) 2.0,
and Enterprise JavaBeans (EJB) 3.0 APIs offer easier programming models than
their J2EE predecessors, allowing you to implement most web, web service, and

business components using simple JavaBeans.

¢ EJB 3.0 eliminates the need for many of the interfaces and other artifacts required

in earlier versions of EJB, in most situations.

Even with the improvements delivered with Java EE, the JBoss Seam team saw room
for simplifying things even further. Figure 1-2 depicts the Seam framework layered

between your application code and the Java EE framework.

CHAPTER 1 /' INTRODUCING SEAM

Application Components

Seam Framework

Conversations JBoss Rules

Component Model

JSF JSP/ EJB3/JPA JAX-WS
Servlets

Java Enterprise Edition (Java EE)

JNDI RMI JDBC JAXP
Java Standard Edition (Java SE)

Figure 1-2. Seam-enhanced Java EE framework

The Seam Component Model

The simplifications provided by Seam stem mostly from the Seam component model—
this component model can be considered, in essence, as an extension of the component
model used for JSF managed beans. But it can be used for more than just web tier com-
ponents, as you'll see in later chapters.

A key benefit provided by Seam’s component model is the direct use of EJB compo-
nents as backing beans for JSF pages. JSF’s standard model allows for regular JavaBeans
to be used as managed beans, configured in the JSF faces-config.xml file. EJB components
can be invoked from the managed bean’s callback methods, serving as a fagade for the
EJB component. Seam provides a direct bridge between JSF’'s component model and the EJB
component model, allowing you to use an EJB directly as a JSF managed bean. This elimi-
nates the need for extraneous facade beans when all you require is a single EJB.

Another simplification provided by Seam is the ability to use code annotations to
directly bind beans to JSF component names, rather than writing managed-bean entries in

CHAPTER 1 " INTRODUCING SEAM

the faces-config.xml file. The Seam component model includes annotations that can be
used to link an instance of a bean directly to a JSF managed bean name. When the name
is used in a JSF (one of its properties is used as the value of an HTML input field, for
example), the bean instance will automatically be initialized, if necessary, and used as
the backing bean for the JSE There’s no need to connect the bean to the JSF managed
bean name using faces-config.xml.

The Seam component model also supports a more general version of dependency
injection, called bijection. Standard dependency injection involves a one-time initializa-
tion of a bean reference within a component, typically done by some kind of container
or other runtime service. Seam bijection extends this to support the following:

* Two-way propagation of references: A component can have a reference injected
by the container, and a component can also “outject” a reference to the enclosing
context as well.

* Dynamic updates: Instead of doing one-time injection of references, bijection is
done on each invocation of the component. This is key in the Seam component
model, since components can be stateful, and therefore they and their dependent
beans can evolve across invocations.

* Multiple contexts: Dependencies (incoming and outgoing) can be established
across multiple Seam contexts, rather than being forced to exist within a single
context. So a session-scoped component can inject request-scoped beans and
outject application-scoped beans, for example.

This may all sound a bit esoteric at this point, but the value of these features in the
Seam component model will be clear once I show you some example code.

Running Example: A Gadget Catalog

The example we're going to use for much of the book is an online catalog of high-tech
gadgets (mobile phones, laptops, digital media players, etc.). In coming chapters, we'll
build up this application from the simple data entry tool described here into something
a bit more interesting, and we’ll also build solutions to other real-world cases, using the
various capabilities of the Seam framework. But for now, we'll start with a very simple
application that can only do two things:

¢ Display a list of gadgets contained in the catalog.
¢ Allow the user to enter a new gadget into the catalog.

At this point, our model for the application will be painfully simple: a gadget will only
consist of a description (e.g., “Acme Powertop X1 Laptop”) and a type (e.g., “laptop”). The

CHAPTER 1 " INTRODUCING SEAM

data about these gadgets will be stored and managed in a relational database. The page-
flow for the user interface will be equally simplistic: a main page will display the list of
gadgets in the database and offer a single option to add a new gadget to the database.
This option will bring the user to an entry form that prompts for the necessary attributes,
and on submission the new gadget will be stored in the database, and the updated list of
gadgets will be displayed again.

We can represent the “solution design” at this point with a pageflow diagram and a
relational database diagram. The pageflow for the first iteration of the Gadget Catalog is
shown in Figure 1-3, and the database structure (such as it is) is shown in Figure 1-4.

Add gadget —
I N —
—

[

Gadget Entry Form

-~

Gadget List

Figure 1-3. Gadget Catalog pageflow

GADGET
TYPE CHAR(3)
DESCR VARCHAR(100)

Figure 1-4. Gadget Catalog database

Now all we have to do is build it. As a point of reference, let’s first see what the Gadget
Catalog looks like in the vanilla Java EE framework.

The Gadget Catalog Without Seam

The code for this example can be found in the code bundle for this book, under the
intro-JavakE subdirectory. In the Java EE framework, without JBoss Seam, the customary
approach to implement the Gadget Catalog is to use JSF for the Ul in conjunction with
EJBs for the backing business logic and persistence.

To start, we’ll implement an EJB 3.0 entity bean to represent the gadgets to be stored
in the GADGET table. Listing 1-1 shows the Gadget bean. This is a simple EJB 3.0 entity bean

CHAPTER 1 " INTRODUCING SEAM

that is mapped to the GADGET table using the EJB @Table annotation. The bean has two per-
sistent properties: the description property is mapped to the DESCR column, and the type
property is mapped to the TYPE column.

Listing 1-1. Gadget Entity EJB

@Entity
@Table(name="GADGET")
public class GadgetBean implements Serializable {

private String mDescription = "";

private String mType = "";
public GadgetBean() { }

@Id

@Column(name="DESCR")

public String getDescription() {
return mDescription;

public void setDescription(String desc) {
mDescription = desc;

@Id

@Column(name="TYPE")

public String getType() {
return mType;

public void setType(String t) {
mType = t;

CHAPTER 1 " INTRODUCING SEAM

Practical Tip Be careful about SQL reserved words used as EJB entity bean class or property names.
Persistence engines may try to map them directly to auto-generated columns/tables, resulting in unexpected
SQLExceptions. Notice that we called our GadgetBean property “description”, rather than “desc”. This is
longer to type, but “desc” is reserved in some databases. If you decided to auto-generate the schema, a
property called “desc” could be mapped into a column named “DESC”, and problems could ensue. We're
being extra careful here by using explicit @Column EJB3 annotations to map the properties to columns in
our database model, so even if we auto-generated the schema (as we do in the sample code provided in the
book’s code bundle), we’re sure not to run into issues.

In order to implement the functionality we've laid out for our Gadget Catalog, we'll
need to be able to get a list of all gadgets currently in the database, and we’ll need to be
able to add a new Gadget to the database. Using a fairly typical “session facade” pattern
for EJBs, we create a GadgetAdminBean session EJB to provide these functions. The code for
this is shown in Listing 1-2.

Listing 1-2. GadgetAdminBean Session EJB

@Stateless

public class GadgetAdminBean implements IGadgetAdminBean {
@PersistenceContext(unitName="gadgetDatabase")
private EntityManager mEntityManager;

/** Retrieve all gadgets from the catalog, ordered by description */
public List<GadgetBean> getAllGadgets() {
List<GadgetBean> gadgets = new ArraylList<GadgetBean>();
try {
Query q =
mEntityManager.createQuery("select g from GadgetBean " +
"g order by g.description");
List glist = g.getResultlList();
Tterator i = glist.iterator();
while (i.hasNext()) {
gadgets.add((GadgetBean)i.next());

8

CHAPTER 1 " INTRODUCING SEAM

catch (Exception e) {
e.printStackTrace();
}

return gadgets;

/** Insert a new gadget into the catalog */
public void newGadget(GadgetBean g) {
try {
mEntityManager.persist(g);
}
catch (Exception e) {
e.printStackTrace();

This session EJB uses standard EJB 3.0 and Java Persistence API (JPA) calls to imple-
ment the required functions. We've marked this as a stateless session bean using the EJB
3.0 @Stateless annotation on the class declaration. We're also using the JPA @Persistence-
Context annotation to inject a JPA EntityManager into this session bean, allowing us to
perform the persistence operations necessary to query and insert into the gadget data-
base. We're referencing a persistence unit named “gadgetDatabase”, so we'll need to
define a persistence unit with this name in the persistence.xml deployment file when
we package up these EJBs.

The getAllGadgets () method loads the entire Gadget Catalog using a JPA query
created from the EntityManager. The newGadget () method persists a new gadget (in the
form of a GadgetBean) using the EntityManager.

These two EJBs seem to take care of our current needs in terms of persistence opera-
tions, so now we can turn our attention to the Ul To implement the UI we specified in
the pageflow design earlier, we create two JSF pages, one for each of the pages we speci-
fied. The first JSF page displays the list of gadgets in the database along with a link to
create a new gadget. In building these pages, let’s assume we can access the persistence
functionality we built earlier through a JSF managed bean named “gadgetAdmin”. Our
gadget list JSF is shown in Listing 1-3. It simply uses a JSF data table component to iterate
through the gadgets returned from the getAllGadgets() operation on the gadgetAdmin
bean, displaying each gadget as a row in a table. Then, at the bottom of the table, we
generate a link that invokes a JSF action named “addGadget”.

CHAPTER 1 " INTRODUCING SEAM

Listing 1-3. Gadget List JSF Page

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="+"%>

<html>
<head>

<title>Gadget List</title>

</head>

<body>

<f:views>

<h:messages/>
<!-- Show the current gadget catalog -->
<h:dataTable value="#{gadgetAdmin.allGadgets}" var="g">
<h:column>
<f:facet name="header">
<h:outputText value="Type" />
</f:facet>
<h:outputText value="#{g.type}" />
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Description" />
</f:facet>
<h:outputText value="#{g.description}" />
</h:column>
</h:dataTable>
<h:form>
<!-- Link to add a new gadget -->
<h:commandLink action="addGadget">
<h:outputText value="Add a new gadget" />
</h:commandLink>
</h:form>

</f:view>

</body>
</html>

The addGadget action is supposed to bring us to the second page in our pageflow,

the gadget entry form. The JSF page that implements this, addGadget. jsp, is shown in
Listing 1-4.

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

10 CHAPTER 1 " INTRODUCING SEAM

Listing 1-4. Gadget Entry JSF Page

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="+"%>

<html>
<head>

<title>Add a Gadget</title>
</head>

<body>
<f:view>
<h:form>
<table border="0">
<tr>
<td>Description:</td>
<td>
<h:inputText value="#{gadget.description}"
required="true" />
</td>
</tr>
<tr>
<td>Type:</td>
<td>
<h:selectOneMenu value="#{gadget.type}"
required="true">
<f:selectItems value="#{gadgetAdmin.gadgetTypes}" />
</h:selectOneMenu>
</td>
</tr>
</table>
<h:commandButton type="submit" value="Create"
action="#{gadgetAdmin.newGadget}" />
</h:form>
</f:view>
</body>
</html>

This page generates a simple entry form that prompts the user for a type and
description for a new gadget for the catalog. The description field is a simple text entry

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

CHAPTER 1 " INTRODUCING SEAM

field, while the type is a drop-down menu populated with allowed values from the
GadgetTypes enumeration. Both fields are bound to properties on a new managed bean
named “gadget”. At the end of the form is a submit button that invokes the newGadget()
operation on the gadgetAdmin managed bean.

At this point, as with any JSF application, we need to wire the JSF managed beans to
classes in our model. We could try to associate the gadgetAdmin bean with an instance of
our GadgetAdminBean session EJB and the gadget bean to our GadgetBean entity EJB, using
entries in our faces-config.xml like this:

<faces-config>
<managed-bean>
<managed-bean-name>gadget</managed-bean-name>
<managed-bean-class>GadgetBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

<managed-bean>
<managed-bean-name>gadgetAdmin</managed-bean-name>
<managed-bean-class>GadgetAdminBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
</faces-config>

But what you'll find is that this won’t work, at least not the way you'd expect. In JSE
managed beans are expected to be simple JavaBeans, and they’ll be managed that way
at runtime by the JSF container. When the gadget or gadgetAdmin beans are created and
used at runtime, the JSF container won't follow the rules for EJB components when han-
dling them. It won'’t, for example, use the EJB container to obtain an instance of the
GadgetAdminBean, as you should for any session bean. Instead, it will try to construct
instances of GadgetAdminBean directly, outside of the EJB container and all of its services.
This obviously isn’t what we want—we defined GadgetBean and GadgetAdminBean as EJB
components because we wanted them to use the persistence and transaction manage-
ment services of the EJB container.

In order to integrate our EJB components into our JSF pages, we need to create
JavaBean wrappers that the JSF components can use directly. These JavaBean wrappers
will then interact with the EJB components to get the gadget persistence done.

First, we'll have to write a simple JavaBean version of our GadgetBean entity EJB that can
be used as the gadget managed bean. This JavaBean class, Gadget, is shown in Listing 1-5.

11

12

CHAPTER 1 " INTRODUCING SEAM

Listing 1-5. Simple JavaBean for Gadget Values

public class Gadget {
private String mDescription;
private GadgetType mType;

public String getDescription() { return mDescription; }
public void setDescription(String desc) { mDescription = desc; }

public String getType() { return (mType != null ? mType.name() : null); }
public void setType(String t) { mType = GadgetType.valueOf(t); }

This JavaBean just carries the value of the gadget’s properties between the JSF in
the UI and the GadgetBean in the EJB container. It has the same two properties as our
GadgetBean entity EJB, naturally.

Now, we need a JavaBean fagade for our GadgetAdminBean session EJB. We'll be using
this bean to implement JSF actions, so we call it “GadgetAdminAction”. The code for this
wrapper is shown in Listing 1-6.

Listing 1-6. Action Wrapper for GadgetAdminBean

public class GadgetAdminAction {
@EJB
private IGadgetAdminBean mGadgetAdmin;

// Managed property for our JSF action, populated with the

// Gadget being operated in the current request (added/deleted/edited)
private Gadget mGadget;

public Gadget getGadget() { return mGadget; }

public void setGadget(Gadget g) { mGadget = g; }

/** Facade to the newGadget operation on the GadgetAdminBean */
public String newGadget() {
// Convert the Gadget into a GadgetBean and persist it
GadgetBean bean = gadgetToBean(mGadget);
mGadgetAdmin.newGadget (bean);
return "success";

/** Facade to the getAllGadgets operation on the GadgetAdminBean */
public List<Gadget> getAllGadgets() {

CHAPTER 1 " INTRODUCING SEAM

List<Gadget> gadgets = new Arraylist<Gadget>();
List<GadgetBean> beans = mGadgetAdmin.getAllGadgets();
Iterator i = beans.iterator();
while (i.hasNext()) {
Gadget g = beanToGadget((GadgetBean)i.next());
gadgets.add(g);
}

return gadgets;

public Map<String,String> getGadgetTypes() {
Map<String,String> types = new HashMap<String,String>();
for (GadgetType value : GadgetType.values()) {
types.put(value.label(), value.name());
}

return types;

/** Convert a Gadget JavaBean to a GadgetBean EJB */
private GadgetBean gadgetToBean(Gadget g) {
GadgetBean bean = new GadgetBean();
bean.setDescription(g.getDescription());
bean.setType(g.getType());
return bean;

/** Convert a GadgetBean EJB to a Gadget JavaBean */
private Gadget beanToGadget(GadgetBean g) {
Gadget ig = new Gadget();
ig.setDescription(g.getDescription());
ig.setType(g.getType());
return ig;

The GadgetAdminAction wrapper bean does two things: it converts GadgetBean entity
EJBs into Gadget JavaBeans for the JSF components with the beanToGadget () utility
method and also converts Gadget beans from the JSF beans back into GadgetBean EJBs to
persist them with the gadgetToBean() utility method. It also has a method for each opera-
tion on the GadgetAdminBean that we want to invoke as actions. The getAllGadgets()
method invokes the GadgetAdminBean.getAllGadgets() method and converts the list of
GadgetBean references into Gadget instances. The newGadget () method takes the managed

13

14 CHAPTER 1 " INTRODUCING SEAM

Gadget property and converts it into a new GadgetBean, and then passes it to the
GadgetAdminBean.newGadget () method to be persisted.

Finally, we can wire these JavaBean wrappers into the JSF Ul as managed beans,
using the faces-config.xml file shown in Listing 1-7.

Listing 1-7. JSF faces-config.xml for Java EE Gadget Catalog

<faces-config>
<managed-bean>
<managed-bean-name>gadget</managed-bean-name>
<managed-bean-class>Gadget</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
<managed-bean>
<managed-bean-name>gadgetAdmin</managed-bean-name>
<managed-bean-class>GadgetAdminAction</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>gadget</property-name>
<value>#{gadget}</value>
</managed-property>
</managed-bean>

<navigation-rule>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/listGadgets.jsf</to-view-id>
</navigation-case>
<navigation-case>
<from-action>addGadget</from-action>
<to-view-id>/addGadget.jsf</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Notice that, in addition to using the Gadget JavaBean as the gadget managed bean and
GadgetAdminAction as the gadgetAdmin managed bean, we've also defined the pageflow in a
navigation-rule section. Any “success” outcome should take the user back to the gadget
list page, and the addGadget action we referenced in the link on the 1istGadget. jsp page
should take the user to the addGadget . jsp JSF page.

CHAPTER 1 " INTRODUCING SEAM

The Gadget Catalog with JBoss Seam

The last few steps that we were forced to carry out in creating the plain Java EE version of
the Gadget Catalog provide some of the motivation for the simplifications introduced in
JBoss Seam. If you look back at the previous section, you'll notice that we had all the
required persistence and UI functionality for the Gadget Catalog defined as of Listing 1-4.
Everything that follows in the section is just overhead that’s needed in order to bridge
from the JSF components to the EJB components, and to configure everything. This
“overhead” includes the following:

* The Gadget and GadgetAdminAction JavaBean wrapper classes
* The managed bean declarations in the faces-config.xml

The JBoss Seam project team saw these steps as wasted effort to be eliminated.
Creating the JavaBean wrappers to integrate the JSF and EJB component models doesn’t
add anything to the functionality of the Gadget Catalog; it’s just an implementation detail
required because Java EE doesn’t provide its own bridge between these two component
models. And their philosophy on the managed-bean entries in the faces-config.xml file is
that these represent missing code annotations in the JSF model. In EJB, virtually all of the
details in the ejb-jar.xml deployment descriptors can (optionally) be replaced with code
annotations in EJB 3. Why not give JSF programmers the same option with all those
faces-config.xml options?

JBoss Seam eliminates both of these issues, making our Gadget Catalog simpler to
implement when we use a Java EE server enhanced with Seam. First off, we can use our
GadgetBean and GadgetAdminBean EJB components directly as managed beans within JSF
pages. We no longer need the JavaBean wrapper classes, because Seam provides a bridge
between the JSF and EJB component models.

Second, Seam provides a @Name annotation that can be inserted into our E]JBs to spec-
ify their JSF managed bean names. Our updated GadgetBean EJB is shown in Listing 1-8.

Listing 1-8. Seam-Enhanced GadgetBean Entity EJB

@Entity

@Table(name="GADGET")

@Name("gadget")

public class GadgetBean implements Serializable {

private String mDescription = "";

nn

private String mType = "";
public GadgetBean() { }

@Id

15

16

CHAPTER 1 " INTRODUCING SEAM

@Column(name="DESCR")
public String getDescription() { return mDescription; }
public void setDescription(String desc) {mDescription = desc; }

@Id

@Column(name="TYPE")

public String getType() { return mType; }
public void setType(String t) { mType = t;}

The only difference in the Seam-enabled version is the @Name("gadget") annotation
at the start of the class. This annotation is equivalent to the “gadget” managed-bean entry in
the faces-config.xml file shown in Listing 1-7. We can eliminate the “gadgetAdmin” entry
as well if we put a corresponding @Name annotation on the GadgetAdminBean EJB class.

In summary, Seam has helped us to significantly simplify the implementation of our
little application. There are fewer objects in our model, and the relationship between the
Ul views and the objects in the model makes more sense. You'll experience this again in
Chapter 3, where we use an expanded version of our Gadget Catalog to examine the com-
ponent model in JBoss Seam. There, I compare the object models with and without
Seam, and show you direct evidence of the benefits of linking the EJB and JSF component
models. That chapter also examines a number of other features of the Seam component
model and the benefits that they bring.

Seam Extends Java EE

The previous section gave you a sense for the ways that JBoss Seam simplifies Java EE
development, especially when it comes to applications using JSF and EJB components.
This section quickly surveys the various extended capabilities that Seam provides in its
framework. These capabilities are pretty compelling in their own right, even if the pro-
gramming simplifications described earlier don’t interest you.

Seam Component Services

I mentioned the Seam component model in the previous section because it serves as the
basis for the JSF/E]B simplifications provided by Seam. The Seam component model also
provides a number of powerful extended services on top of the Java EE framework.

All of the Seam component services discussed next will be explored in more detail in
Chapter 3.

CHAPTER 1 " INTRODUCING SEAM

Seam Component Contexts

As with most Java EE component models, Seam components support various runtime
contexts or scopes. Seam components support the typical contexts found in web compo-
nents (request, page, session, and application scopes). But the model adds several
additional contexts that can be useful in enterprise applications.

Seam components support an explicit representation of a stateless context, for
example. This context isn’t usually represented explicitly, because components with
stateless context really don’'t have any context (context refers to the scope of the compo-
nent state, and stateless components by definition have no state).

In addition, Seam components also have contexts for conversation scope and busi-
ness process scope. The conversation context is a critical piece of Seam’s overall web
application model, so I discuss it next in its own section. I also devote Chapter 4 to the
conversation model in Seam because of its importance in Seam and the many practical
benefits it can bring to your application development.

The business process context represents state for a (possibly long-running) business
process. Since business processes can run much longer than the lifetime of a request, a
session, or even the application server itself, the business process context uses persist-
ence services for its state data. Business processes also involve multiple users, potentially,
so the context supports concurrent access as well.

Seam Conversations

Seam conversations are a very interesting and potentially powerful concept provided by
the framework. One way to describe Seam’s conversation concept is that it is a truly user-
oriented transaction. Persistence transactions (like those managed in a JTA context) are
typically defined around data consistency concerns, and business process transactions
typically are defined around task dependencies and process structural consistency.
Seam conversations provide another dimension of transactions, defined by what a user
needs/wants to do within an application.

Another, less formal but more palatable, way to describe conversations is that they
provide another layer between request scope and session scope in web applications.
A conversation can group together data across multiple web requests, and it can track
multiple groupings like this within a single user session.

Seam Events

JSF provides an event model in its component model, but Seam introduces two new
types of events that can be utilized within Seam applications: page actions and
component-driven events.

17

18

CHAPTER 1 " INTRODUCING SEAM

Seam page actions are events that you can have triggered after a user makes a web
request, but before the requested web component or page is rendered. You can specify
page actions that are to be invoked on request to specific views, or use wildcards to cover
groups of views. Page actions are implemented by component operations (JSF managed
bean methods and/or Seam component methods).

Seam component-driven events provide a general event notification scheme for
Seam components. A set of named events can be defined, and component methods can
be registered as “callbacks” on these events. Any component can trigger an event any-
where in its business code, and any component operations on the notification list will
be invoked.

Integrated Pageflow with jPDL

Seam integrates jBPM into the framework in two ways. First, it’s used to implement a rich
pageflow capability. The jBPM Process Definition Language (jPDL) supports more com-
plex and robust pageflows than JSF navigation rules can provide. jPDL pageflows are
stateful, in the sense that the flow is defined as transitions between explicit, named
states. jPDL pageflows are much more structured than JSF navigation rules—they define
starting states, transitions, intermediate state nodes, and end states. And jPDL pageflows
can be more explicit and externalized than JSF pageflows—transitions are defined
around component actions and their outcomes, state transitions can themselves trigger
state changes by invoking component methods, and so on.

You'll learn more about the pageflow capabilities provided by Seam and jPDL in
Chapter 5.

Integrated Business Processes with jBPM and JBoss Rules

jBPM is also used in Seam to provide support for business process management in Seam
applications. Business processes merge pageflow, transactions, task definitions, and rules
to provide a way to define structured task flows. A business process defines what needs to
be done and in what order, who needs to perform specific tasks or task types, and the
rules under which all this happens.

In addition to jBPM, Seam also integrates the JBoss Rules framework into its business
process services. These two capabilities work hand-in-hand to allow you to define and
implement business processes in your Seam application.

You'll explore Seam’s business process and rules engine support in Chapter 7.

CHAPTER 1 " INTRODUCING SEAM

Rich Internet Applications (aka Web 2.0)

You may have noticed the “Web 2.0” buzz word in the title of this book. I didn’t add that
just to sell books—Seam provides some powerful facilities for integrating rich Internet
Uls into your Seam component model, providing interesting ways to plug your business
logic directly into your client-side UI.

Seam supports rich Internet applications built using Asynchronous JavaScript and
XML (AJAX) in two fundamental ways. First, it supplies a remoting capability for Seam
components (mentioned earlier in this chapter) that allows JavaScript code to invoke
your components directly from the client side of the web UI. Second, Seam supplies a
set of JavaScript “shim” code that makes it easy for you to make use of this component
remoting capability in AJAX contexts.

You'll explore this aspect of Seam in Chapter 8.

Read On

I largely mapped out the bulk of the book in the previous sections of this chapter. Chapter 3
provides a basic, practical overview of the core capabilities of Seam and its component
model by creating an extended version of our Gadget Catalog application. Chapter 4
looks at Seam’s conversation concept in depth, and how it can be used to more easily
manage complex user interactions and easily support multiple concurrent “workspaces”
for users. Chapters 5 through 8 explore specific extended capabilities that Seam provides
within its framework (specifically, pageflow with jPDL, security services, business
processes with jJBPM and Rules, and rich Internet Uls with component remoting and
AJAX).

But first, in Chapter 2, I discuss another practical issue related to any framework,
including Seam. That is the installation, configuration, and debugging of Seam applica-
tions. These topics are a necessary evil that comes with developing applications using a
framework. If you'd prefer to blissfully ignore these topics for now and jump right into the
“fun stuff,” you can safely proceed to Chapter 3 and get your teeth into the Seam compo-
nent model right away. You should read Chapters 3 and 4 before proceeding on to the rest
of the book, however, because the Seam component and conversation models provide
the backdrop for all of the other capabilities integrated into the framework. And like it or
not, if you do start using Seam “for real,” you'll find yourself returning to Chapter 2 for
assistance with the administrative details of Seam.

19

20

CHAPTER 1 " INTRODUCING SEAM

Summary

In this chapter, you've had a brief (but hopefully motivating) introduction to the capabili-
ties JBoss Seam brings to the table when building Java EE applications. You saw how
Seam simplifies Java EE by bridging its EJB and JSF component models, and how Seam
extends Java EE with a number of additional capabilities, like structured pageflow, busi-
ness process management, and rich web application support. You were also introduced
to the Gadget Catalog application, which I'll use throughout the rest of the book to
demonstrate all of these areas of Seam.

CHAPTER 2

Seam Configuration and
Administration

The title of this chapter isn’t very compelling, but that’s for a reason: this chapter discusses
the dull but critical details related to the configuration of Seam applications. Before you
can jump in and start writing applications with Seam, you need to set up your application
deployment package with the necessary Seam libraries and configure your application
code to “plug in” the Seam capabilities.

Much as you might want to ignore these issues, they are essential to actually working
with Seam. A book with the title Practical JBoss™ Seam Projects would be remiss if it did-
n't cover these topics, and you'd be negligent if you didn’t get familiar with them to some
degree. Luckily, I've figured out a lot of the hiccups in installing, configuring, and debug-
ging Seam applications for you, so read on to avoid learning these lessons all over again.

Preparing the Application Server

Seam expects certain standard APIs and services to be available in the application server
where a Seam application is going to run. Depending on the type and version of applica-
tion server you plan to use, the task of preparing the application server to run a Seam
application can be more or less involved.

In this section, I'll first describe some basic requirements of Seam, and then discuss
some specific environments and issues specific to getting Seam applications to run in
these environments.

Java 5.0 Required

Regardless of the particular server you plan to use, Seam requires a Java 5.0 runtime, at a
minimum. You can’t use any of the annotations provided by JBoss Seam, or by EJB 3.0, in
aJava 1.4 environment. If your application server does not operate in a Java 5.0 environ-
ment or isn't “certified” in that environment, you might want to reconsider using Seam,
or switch to a different application server to run your Seam applications.

21

22

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Before you do any of the installation I describe in the upcoming text, make sure you
have a current Java 5.0 runtime installed on your system, and ensure that your applica-
tion server is configured to use the Java 5.0 runtime. Java 5.0 for Linux, Windows, and
Solaris can be found on the Sun Java site (http://java.sun.com). Apple provides their own
Java runtime implementations for Mac OS X, and they are available through the Software
Update tool on OS X.

JavaServer Faces

Seam integrates many of its core services (contextual components, web controls, etc.)
into the JSF runtime environment. At the time of this writing, Seam is compatible with
both JSF 1.1 and 1.2. A compliant Java EE 5.0 environment requires a JSF 1.2 implementa-
tion, but several “pre-Java EE” environments, such as JBoss 4, have either JSF 1.1 or 1.2
implementations bundled into their configurations. The JBoss 4.0.x releases, for example,
use Apache MyFaces as their JSF implementation, and MyFaces is only compliant with JSF
1.1. But Sun has released a full reference implementation of JSF 1.2 that can be integrated
into your application server if needed, and the Seam facilities are compatible with it.

Enterprise JavaBeans 3.0

Technically, it is possible to run JBoss Seam without an EJB 3.0 container. You'll be elimi-
nating some of the interesting features of Seam, such as the use of session beans as JSF
managed beans, but you can still make use of Seam’s contextual component services, and
many of the other Seam integrated features, such as jBPM and pageflow.

If your application server includes an EJB 3.0 container, you shouldn’t have to do
anything special to configure it for use with Seam. If your server doesn’'t have an EJB 3.0
container, you have a few choices, as explained next.

Running Seam with the JBoss Embedded EJB 3.0 Container

You can use the JBoss embedded EJB 3.0 container with Seam in your application. The
embedded EJB 3.0 container can be embedded directly into your application (hence the
name), allowing you to run EJB 3.0 components regardless of the application server capa-
bilities. The advantage of this is that you don’t need to alter any application server
configuration details, which could be an issue in some situations. You may be running
multiple applications on your server, for example, some of which need an EJB 2.1 envi-
ronment. You could also be running in an environment where an operations group
tightly controls the application server configuration (for very good reasons), and signifi-
cant changes like this are difficult to implement globally.

http://java.sun.com

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Seam ships with the JBoss EJB 3.0 container, allowing you to embed it into your
applications where needed. Integrating the embedded container into your Seam applica-
tion involves the following steps:

Add the Embedded EJB 3.0 Configuration Files

All of the configuration files found in the embedded-ejb/conf directory in the Seam distri-
bution (with the possible exception of jndi.properties) need to be available on your
application’s classpath. The jndi.properties file included in the embedded-ejb/conf

with Seam is specialized for use with the JBoss application server. If you are running your
Seam application in JBoss, you can use this jndi.properties file. If you are using another
application server, you should not include this jndi.properties file, because it could
cause your application to fail to connect to the application server’s JNDI services to
access runtime resources.

If your application is deployed as an enterprise archive (EAR) file, put these configura-
tion files into the root of the EAR to ensure that all modules can “see” them on the classpath.
If your application is deployed as a web archive (WAR) file, put these configuration files into
the WEB-INF/1ib directory of the WAR.

Install the Embedded EJB 3.0 Libraries

As of this writing, all of the libraries required for the embedded EJB container are located
in the 1ib directory of the Seam distribution.
The specific libraries required are as follows:

e The hibernate-all.jar library, which includes all of the Hibernate classes that the
embedded container uses for its JPA implementation

e The thirdparty-all.jar library, which includes several extra utilities used by the
container

* The jboss-ejb3-all.jar library, which includes all of the classes that implement
the EJB 3.0 container itself

Again, these libraries can be included in the root of your EAR file or in the WEB-INF/1ib
directory of your WAR file, depending on how you are packaging your application for
deployment.

Configure the Seam EJB 3.0 Component

The EJB 3.0 embedded container ships with a Seam component, org. jboss.seam.core.ejb,
that initializes the EJB container when the Seam application starts and shuts it down when

23

24

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

the Seam application is undeployed. To install the component, you need to add the follow-
ing to the Seam components.xml configuration file in your application:

<core:ejb/>

I'll discuss more details about the components.xml file in its own section later in this
chapter.

Configure a Default DataSource

The embedded EJB 3.0 container is configured to use a default DataSource for its persistence
operations. This default DataSource is configured to use an embedded Hypersonic Java
database that the embedded EJB container initializes for you at startup. If you want to use
this default DataSource with your EJB components, you'll need to reference it in your JPA
persistence.xml file using the JNDI name “java:/DefaultDS”. If you want/need to have your
data persisted to a different database, you'll need to define your own DataSource for the EJB
container to use. This is done by creating a jboss-beans.xml configuration file with the
appropriate settings and placing it into the classpath of your application.

An example DataSource configuration is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="uzrn:jboss:bean-deployer bean-deployer 1 0.xsd"
xmlns="uzrn:jboss:bean-deployer">
<bean name="GadgetDSBootstrap"
class="org.jboss.resource.adapter.jdbc.local.LocalTxDataSource">
<property name="driverClass">
<value>org.hsqldb. jdbcDriver</value>
</property>
<property name="connectionURL"><value>jdbc:hsqldb:.</value></property>
<property name="userName"><value>sa</value></property>
<property name="jndiName"><value>java:/GadgetDS</value></property>
<property name="minSize"><value>0</value></property>
<property name="maxSize"><value>10</value></property>
<property name="blockingTimeout"><value>1000</value></property>
<property name="idleTimeout"><value>50000</value></property>
<property name="transactionManager">
<inject bean="TransactionManager"/>
</property>
<property name="cachedConnectionManager">
<inject bean="CachedConnectionManager"/>
</property>
<property name="initialContextProperties">

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

<inject bean="InitialContextProperties"/>
</property>
</bean>

<bean name="GadgetDS" class="java.lang.Object">
<constructor factoryMethod="getDatasource">
<factory bean="GadgetDSBootstrap"/>
</constructor>
</bean>
</deployment>

The properties and attributes that you will likely have to change to suit your database
are highlighted in bold in the preceding listing. The first bean entry in the file, with its
name set to “GadgetDSBootstrap”, defines a bootstrap service that will initialize the
DataSource at runtime. The second bean, with its name set to “GadgetDS”, actually puts
the entry into the JNDI runtime services of the application server. The name of the boot-
strap bean (“GadgetDSBootstrap” in the preceding example) needs to match the name
of the bean referenced in the constructor factory element of the second bean. Also, the
name of the second bean (“GadgetDS” in this example) needs to match the JNDI name
you give to the DataSource in the bootstrap configuration. This is set in the “jndiName”
property (“java:/GadgetDS” in this example).

Running Seam Without EJB 3.0

If you need to run your Seam application in a J2EE 1.4 environment, and you can’t use
the embedded EJB 3.0 container, you'll simply need to do without the use of EJB-based
Seam components. You'll see the power of these components in Chapter 3, which
explores the core component services in Seam. Without an EJB 3.0 container, Seam only
allows you to use JavaBeans as Seam components. These are still very useful in them-
selves, of course. But other advantages of the EJB integration, such as the ability to use
EJB session beans directly as JSF managed beans, are no longer available, and you'll need
to resort to JavaBean fagades around your EJB components to integrate them into the JSF
tier of your applications.

Configuring JBoss 4

The JBoss team developed Seam, so of course it integrates easiest with the JBoss applica-
tion server. The JBoss 4 server, however, is a J2EE 1.4 server, which means some special
measures have to be taken to enable the Java EE services that Seam expects.

The standard JBoss 4 download does not include the JBoss EJB 3.0 container. JBoss 4
is a J2EE 1.4-compliant server, and EJB 3 comes into the picture in Java EE 5.0. You can,

25

26

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

of course, embed the EJB 3.0 container into each of your applications, as described in the
previous section. It's much more convenient, however, to enable the EJB 3.0 container
within the JBoss application server itself, so that all of your applications can make use of it.

It is possible to install the JBoss EJB 3.0 container into an existing vanilla JBoss 4
server—JBoss provides full details in the documentation for the embedded EJB 3.0 pack-
age. But thankfully the JBoss team has provided a much easier option—the JEMS
installer. This is a smart installer for the overall JBoss Enterprise Middleware Suite (JEMS)
and can automatically install various optional packages (including the EJB 3.0 container)
into a new JBoss application server when you create it.

If you need to use Seam in an existing JBoss 4 server, and it does not have the EJB 3.0
container installed, download the embedded EJB 3.0 container from JBoss and run
through the instructions to install it. If you can start from scratch with a new JBoss 4
server, get the JEMS installer from the JBoss, site and choose the EJB 3.0 option when
going through the installer wizard.

Installation in a Generic Java EE 5.0 Environment

Since aJava EE 5.0 environment includes an EJB 3.0 container by definition, as well as
JSF 1.2, there’s nothing you need to add to a Java EE application server to make it ready
for Seam.

One potential issue that you will encounter in a Java EE 5.0 environment is stricter
validation of deployment descriptors and deployment archives in general. Java EE tight-
ened up some of the rules concerning deployment details, and if an application server is
truly compliant, you might find that some of your configuration details that have worked
fine in other, less strict application servers will not deploy correctly in a fully compliant
Java EE server.

One commonly encountered issue in this category when dealing with Seam applica-
tions is the specification of EJB interceptors. When using Seam with EJB 3.0 components,
you need to include Seam’s EJB interceptor in your EJB deployment descriptor, so that
Seam can interject itself into EJB life-cycle events (see the section “EJB Component Con-
figuration” later in this chapter). Some application servers (most notably JBoss) will allow
you to include an interceptor in the assembly-descriptor section of the ejb-jar.xml file,
without having a corresponding entry in the interceptors section of the deployment
descriptor. Here’s a typical ejb-jar.xml file for a Seam application:

<ejb-jar xmlns=http://java.sun.com/xml/ns/javaee
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">
<assembly-descriptor>
<interceptor-binding>

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaeejava.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
Administrateur
Highlight

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

<ejb-name>*</ejb-name>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor
</interceptor-class>
</interceptor-binding>
</assembly-descriptor>
</ejb-jar>

Practical Tip It's a good idea to specify the XML schema that you are using in your XML files, espe-
cially with Java EE deployment descriptors. This is good XML practice, since it allows for development-time
or runtime validation, but it’s also a clear statement to the container about what level of the specification you
are using. Some servers (JBoss and Glassfish are known offenders) will use the schema reference as a
shortcut to see whether to enable various container services. Glassfish 1.0, for example, won’t parse JPA
annotations in web components if you don’t use the servlet 2.5 schema in your web . xm1.

Having said that, however, I'm going to omit the schemas from the XML examples for the remainder of this
chapter, and the book. | do this for the sake of brevity only, and because the schema location isn’t usually
relevant to the example at hand. The code examples included with this book include XML configuration files
with schemas referenced whenever possible. If you’re curious about which schema to import and how, you
can refer to the example code directly.

In a Java EE-compliant server like Glassfish, you may need to include the
corresponding interceptors entry in order for your archive to deploy properly:

<ejb-jar>
<interceptors>
<interceptor>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor
</interceptor-class>
</interceptor>
</interceptors>
<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor
</interceptor-class>
</interceptor-binding>
</assembly-descriptor>
</ejb-jar>

27

28

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

This is a good habit to follow whether you are using a Java EE server or not, since it
makes your application more “server-proof” in general, especially if you make heavy use
of EJB interceptors.

Installation in a Generic J2EE 1.4 Environment

If you want to deploy a Seam application to a J2EE 1.4 environment, you'll need to con-
sider each of the technical components mentioned earlier, since none of them are
guaranteed to be present in a J2EE 1.4 application server.

* Java 5.0: Verify that the application server can run in a Java 5.0 virtual machine.
J2EE 1.4 only requires support up to Java 1.4, so you may find compatibility issues
with your particular server. If you simply cannot run your server in Java 5.0, you
cannot run a Seam application on that server.

e JSF:]SF is not a required element of J2EE 1.4 servers, so unless your application
server bundles it as an extra feature, you will need to install the Apache MyFaces
or Sun reference implementation of JSF 1.1 or 1.2. You either install the required
libraries directly into the application server or add the libraries to your Seam appli-
cation(s) directly, as described earlier in the section “JavaServer Faces.” If you want
to install JSF in the server itself, consult the administration documentation for
your application server for the details on how this is done.

e EJB 3.0:J2EE 1.4 requires an EJB 2.1 container. As mentioned previously, you can
opt to run a Seam application without using Seam’s EJB support and stick to basic
JavaBeans for Seam components. If you do want to enable Seam’s E]B support,
your best bet is to use the JBoss embedded EJB 3.0 container, following the steps
outlined earlier in the section “Running Seam with the JBoss Embedded EJB 3.0
Container.”

Configuring a Seam Application

Once the application server environment is ready, you can turn to “Seam-enabling” your
application. The basics of enabling Seam are fairly simple to start. The configuration of
your Seam application becomes more complex as you start to use more of the optional
services provided in the framework.

In this section, I'll cover the most common configuration needs for a Seam applica-
tion. I'll start with the libraries and configuration details that you must provide in order
for the core Seam services to function. Along the way, I'll also point out some common-
but-optional configuration steps that you should be aware of when starting your Seam
application.

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Specifics on configuring the various optional services in Seam (pageflow, security,
BPM, etc.) will be covered in their respective chapters. The material here provides an
essential backdrop for those details, however, since I describe the general purpose of the
various Seam configuration files within the framework. Once you understand their gen-
eral purpose, the details in the later chapters are just a matter of understanding specific
options you can include in these configuration files.

Install Seam Core Libraries

Like any software, Seam needs code to run. At the bare minimum, any Seam application
must include the core Seam library, jboss-seam. jar, in its classpath. If you are deploying
your application as an EAR file, the most convenient (and portable) way to include the
library is to put it in your EAR file and add it as a java module in the application.xml file.
This ensures that any web or EJB modules in your application also have the Seam library
available. If you put the jboss-seam. jar file in the root of the EAR file, for example, you
would reference it in the application.xml file like so:

<application>
<display-name>Practical Seam: Configuration</display-name>
<module>
<web>
<web-uri>myWebStuff.war</web-uri>
<context-root>/myApp</context-root>
</web>
</module>
<module>
<ejb>myEJBs.jar</ejb>
</module>
<module>
<java>jboss-seam.jar</java>
</module>
</application>

If you are deploying your application as a WAR file, you would just drop the
jboss-seam. jar file into the WEB-INF/1ib directory of the archive.

There are numerous support libraries included with Seam that you may or may
not need to include in your application archive, depending on how you are using Seam.
Most of these will be covered in later chapters, when I discuss the various optional serv-
ices available in Seam.

29

30

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Configure Facelets

One general “service” that you will likely want to use with your Seam applications at
some point is Facelets. Facelets is not tied in any deep way to Seam—it is a separate open
source project, operated within Sun’s java.net community, that provides an XML-based
alternative to using JSPs for page views in a JSF-based application. If for no other reason,
you might want to use Facelets because nearly all of the Seam sample applications use it
for their views, and Seam ships with a tool that generates application shells, including
template Facelets pages. Also, several of the more recent Seam features, such as its PDF
and e-mail facilities, actually require Facelets. But Facelets does provide some interesting
advantages over JSP that might lead you to use it independent of these other concerns.

Because of its use of Facelets, Seam ships with all of the required Facelets libraries.
As of the 1.2 release of Seam, these libraries reside in the 1ib directory of the Seam distri-
bution.! You'll need to include the following libraries in your application’s classpath in
order to enable Facelets in your application:

* jsf-facelets.jar
e el-api.jar
e el-ri.jar

Like the Seam library, you can include these as java modules in your application.xml
descriptor, or just place them in the WEB-INF/1ib directory of your web archive(s). Before
including these in your application archive, though, make sure your application server
does not bundle them in the server classpath by default, since having them in both the
server classpath and your application classpath can cause class loading issues in some
situations.

In order for Facelets-based pages to be parsed correctly, you also need to install
the Facelets view handler into the JSF runtime environment. This is done by adding the
following to your faces-config.xml file:

<faces-config>
<application>
<view-handler>
com.sun.facelets.FaceletViewHandler
</view-handler>

</application>

</faces-config>

1. Like other JBoss projects, the Seam distributions tend to change in significant ways, even in “minor”
point releases. So the precise location of these libraries in your version of Seam might vary.

Administrateur
Highlight

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Some of Seam’s services provide enhanced JSF Expression Language (EL) syntax
features. Seam’s security features, for example, allow you to optionally make use of
extended EL functions in your configuration files and JSF pages, in order to drive your
application’s security aspects. In these cases, to enable the extended EL functions, you'll
need to use Seam’s specialized Facelet view handler:

<view-handler>
org.jboss.seam.ui.facelet.SeamFaceletViewHandler
</view-handler>

Web Component Configuration

Each Seam application must configure some core Seam plug-ins in their deployment
descriptors. These plug-ins inject themselves into the standard processing cycle of JSF
and EJB components, and implement the core component and contextual capabilities
of Seam. I'll discuss the nature and benefits of these services in Chapters 3 and 4, but
for now, suffice it to say that these various plug-ins are necessary for Seam to function

properly.

Seam JSF Phase Listener

At the heart of Seam’s component and context services is the Seam JSF phase listener. It
receives events from the JSF runtime during request processing, allowing Seam to keep
its various contexts in their proper state, among other things.

The Seam phase listener is installed in your faces-config.xml file:

<faces-config>

<lifecycle>
<phase-listener>org.jboss.seam.jsf.SeamPhaseListener</phase-listener>
</lifecycle>

</faces-config>

Seam Servlet Listener

In order to initialize the Seam core services and to correctly manage some Seam contexts
that are in common with standard web container contexts, you have to install the Seam
servlet listener in your web.xml deployment descriptor:

31

32

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

<web-app>
<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

</web-app>

Optional Seam Web Features

There are several basic but optional web features that Seam provides, with some simple
configuration requirements of their own.

Seam ships with a number of servlet filters that can be individually enabled in the
Seam components.xml file (described in the next section). Each of these filters provides
some basic functionality in the context of a web application, such as more flexible excep-
tion handling, or easier handling of multipart form submissions. In order to use any of
these filters in your Seam application, you first have to configure the primary Seam filter
in your web. xml deployment descriptor:

<web-app>

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.web.SeamFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

</web-app>

Once the base Seam filter is in place, you can add any of the other optional Seam
web filters to your application as well, with additional filter entries in your web.xm1.

In addition to these back-end web filters, Seam also provides several very useful JSF
controls that you can use in your JSF pages for things like validation of JSF form submis-
sions and automatic data conversion. In order to use these JSF controls, you must
include the Seam Ul library, jboss-seam-ui. jar, in the classpath of your web archive.
Again, this is done by placing the library into the WEB-INF/1ib directory of the WAR file.

Administrateur
Highlight

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

EJB Component Configuration

If you plan to use Seam with EJB components, you need to install the Seam EJB interceptor
in your E]JB deployment descriptor:

<ejb-jar>

<assembly-descriptor>
<interceptors>
<interceptor>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor
</interceptor-class>
</interceptor>
</interceptors>

<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor
</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

</ejb-jar>

This entry will apply the Seam interceptor to all EJB components that you deploy
as part of your application. The Seam interceptor allows EJB components to be used as
Seam components, by “plugging” them into the Seam component life cycle when you
annotate your EJBs with the Seam @Name annotation.

In addition, you need to tell Seam how to find EJB components in your application
server’s JNDI services. This is done with an entry in the components. xml file. See the next
section, “Seam Configuration Files,” for details.

Seam Configuration Files

The first part of this chapter discussed how to configure the application server features that
Seam requires at runtime, and you've seen the required configuration entries that you need

to include in the web and EJB deployment descriptors, and the faces-config.xml file, of your
Seam application.

33

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Now, I'll discuss the configuration files specific to the Seam framework. At this stage,
I'll introduce the basic purpose of each configuration file, so that it’s clear what role each
one plays in general. The remaining chapters will constantly be revisiting these configu-
ration files, since virtually every Seam service makes use of one or more of these to
configure its runtime behavior.

seam.properties

Let’s start with the most important Seam configuration file, seam.properties. This config-
uration file is the most important, not because you need to configure a lot of things in it,
but because Seam’s core component services won't operate correctly if this file is absent
from your deployment archives. Seam will not scan an archive for component definitions
unless it has a seam.properties file sitting in the root or the META-INF directory of the
archive.

It's possible to use seam.properties to specify properties for Seam components, but
it's more typical to do this in the components.xml file discussed in the next section. Com-
ponents are “installed” into your Seam application in components.xml, so keeping all of
the component configuration in this one file makes things cleaner overall.

components.xml

The components.xml file is used to configure Seam components. The components.xml file
normally sits in the WEB-INF directory of your WAR file. But it can also be placed in the
META-INF directory of any of your application jar files, or in any directory of an archive
that has at least one component annotated with an @\ame annotation. If you are deploying
a WAR file, however, it’s probably best to put the components.xml file in its WEB-INF direc-
tory, so that it’s easy to locate.

The components.xml file is typically used to configure Seam’s core components,
enabling support for the various Seam runtime services (jJBPM, pageflow, security, etc.).
You can also use components.xml to declare and configure your own application compo-
nents, if you'd like. But typically your application components will be declared and
named using an @Name annotation in the code for the component.

An entry in components.xml typically looks like the following:

<components>

<component name="com.myorg.mycomponentimpl”>
<property name="myproperty1">someValue</property>
<property name="myproperty2">someOtherValue</property>
</component>

</components>

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Some services, however, can use their own XML formats for the configuration details in
components.xml. The Seam security services, for example, have their own schema for the con-
figuration details, which you would reference in the root element of the configuration.xml
file. In the following example, we're including the schema references in the file, so that we
can see how the security service schema is referenced and used in the configuration:

<components xmlns="http://jboss.com/products/seam/components”
xmlns:security="http://jboss.com/products/seam/security”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.com/products/seam/security
http://jboss.com/products/seam/security-1.2.xsd">

<!-- Setup the Seam security component -->
<security:identity authenticate-method="#{login.login}"/>

</components>

It is possible to deploy a Seam application with little or nothing in the components.xml
file. This won’t be the case in a typical application, because any Seam service you use will
probably involve some kind of configuration data to operate the way you require. If you
are using any EJB 3.0 components as Seam components, you do need to provide a mini-
mal components.xml file in your application. In order for Seam to interoperate with the
EJB container, you need to include an entry for Seam’s core initialization component,
and this entry needs to include a setting for the JNDI pattern that Seam should use to
find your application’s EJB components in the JNDI services of the application server.
The following example shows how this setting is provided for the JBoss application
server:

<components>
<component name="org.jboss.seam.core.init">
<property name="jndiPattern">myApplication/#{ejbName}/local</property>
</component>
</components>

In this example, the “myApplication” portion of the JNDI pattern represents the con-
text root of the application, and the “#{ejpName}” portion is an EL expression that refers
to the name of the EJB, as specified either in its @Entity, @Stateless, or @Stateful annota-
tion, or in its ejb-jar.xml entry.

35

http://jboss.com/products/seam/components
http://jboss.com/products/seam/security
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://jboss.com/products/seam/securityjboss.com/products/seam/security-1.2.xsd

36

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

pages.xml

As the name implies, the pages.xml configuration file is used in Seam to specify various
properties for page views within your application. The pages.xml file is placed in the
WEB-INF directory in your WAR file. A pages.xml configuration file doesn’t make any sense
unless there are web pages involved, so a WAR file is the only place where you can pro-
vide a pages.xml file.

A number of useful Seam features can be applied to your pages in pages.xml, including
the following:

* Page actions: You can specify actions on components that should be invoked
before a page is invoked.

* Page navigation: The same navigation rules that you define in your
faces-config.xml file can optionally be placed in pages.xml. These describe
how users should be taken from one page to the next, depending on the outcome
of actions they trigger in the pages.

* Error handling: You can specify what should be done (redirect to a page, generate
a JSF message, end the current conversation, all of the above) when errors occur
on your pages.

¢ Conversation management: A page can be configured to automatically start or end
a conversation context when it is rendered.

* Security: Using Seam’s security services, you can specify declarative security con-
straints on your pages, saying what pages require authenticated users, who can
access them, and what roles they require.

I'll discuss the specifics of how most of these are configured in pages.xml when I
cover the related services in later chapters of the book.

Some Seam applications may have no need to use a pages.xml configuration file at
all. The application may not need to use page actions or the other features specified pre-
viously, or these features might be configured in other ways (e.g., the navigation rules are
placed in faces-config.xml). But most Seam applications will make use of a pages. xml file,
since there are often page-specific settings that you want to provide, and this is the logi-
cal way to do that in Seam.

CHAPTER 2 ©° SEAM CONFIGURATION AND ADMINISTRATION

Summary

This chapter provided a summary of the configuration and administration requirements
for a Seam application. You started with a look at how the application server is configured
to properly run Seam applications. You saw how the JBoss server can be configured to use
Seam, and then explored the general issues with running Seam in a generic Java EE 5.0
application server and in a J2EE 1.4 application server.

Next, you learned how a Seam application itself is configured, in terms of the
libraries and configuration files that need to be present to “Seam-enable” an application.
The various entries required in the standard Java EE deployment descriptors were
described, along with the various Seam configuration files and how/why they are used.

Once you've read through this chapter, you should have an understanding of what it
takes to get a working Seam environment and a basic Seam-enabled application config-
ured. In the rest of the book, you'll study the capabilities that Seam provides, and how
these various configuration areas are used to control how these capabilities work at
runtime.

37

CHAPTER 3

Component Fundamentals

In this chapter, we're going to explore the core capabilities of Seam’s component model,
which is at the heart of all of the services provided by the framework. We’ll do this in a
practical way (of course), by building out a (slightly) more complete version of the Gadget
Catalog application that I introduced in Chapter 1. As you move along in the chapter,
you'll see me demonstrate the key capabilities of the Seam component model by adding
these extensions to the Gadget Catalog application.

Caution Java EE combined with Seam is different from just plain Java EE. As you move along through
this chapter and the ones that follow, I'll try to highlight the important differences between life in standard
Java EE versus life in Java EE plus Seam. There will be times when this may seem a bit daunting, especially
if you're not completely versant in Java EE. Stick with it and walk through the sample code | provide in the
book’s code bundle as you read this chapter. You won’t be disappointed in the richer development frame-
work that Seam provides once you master its various services and capabilities. It’s a satisfying experience
to master any framework that helps you do good things faster.

Seam Component Types

Seam provides a broader component model for Java EE, one that subsumes, in a sense,
both the JSF and EJB component models. Note that Seam doesn’t replace these other
component models. Instead, it tries to unify them into a single component model that
can be used (almost) interchangeably between JSF and EJB contexts.

If you put the various types of EJB components together with Plain Old Java Objects
(POJOs) and JavaBeans supported by JSE you have five options for implementing Seam
components:

¢ JavaBeans/POJOs

¢ Stateless session EJBs

39

40

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

e Stateful session EJBs
* Entity EJBs
* Message-driven EJBs

It's important to understand from the outset that, while Seam makes it possible to
use all of these component types in general, there are specific cases where the different
types can be used and cases where they can’t and/or shouldn’t be used. Rather than
describe each of these situations in an analytical fashion, I'll take a more practical
approach (naturally). Let’s look at some common development contexts in web applica-
tions and the types of Seam components that can be applied to them. The first two, form
backing beans and action listeners, are directly supported by JSE but native JSF only sup-
ports the use of regular JavaBeans for these, and the use of EJB components in these
contexts is more complicated than you might like. The last context, browser-accessible
components, is not supported directly by JSF at all. So here again, we're seeing how Seam
both simplifies and extends Java EE.

Form Backing Beans

Backing beans are a common pattern used in Java web frameworks, including JSF and
Struts. In JSE backing beans are the targets of JSF forms and are also used to inject data
into JSF pages. Standard JSF supports the use of JavaBeans/POJOs as form backing beans.
The Seam component model extends this to allow EJB 3.0 components to serve as back-
ing beans within JSF web applications as well.

If you think about the EJB component model for a minute, you'll realize that the best
fit for backing beans are stateful session EJBs or entity E]JBs. These types of EJB 3.0 com-
ponents are meant to represent client state data, which aligns very well with their use as
backing beans. If you really don’t need the container services offered by EJB components,
however, such as life-cycle management and instance pooling, plus persistence manage-
ment in the case of entity EJBs, you'll probably want to stick to regular JavaBeans or
POJOs for your backing beans.

You shouldn'’t use stateless session EJBs as backing beans, because their component
models just don’t make sense for this purpose. This isn’t a limitation imposed by Seam or
JSE it’s simply the nature of how stateless session EJBs are managed by their container.
Stateless session beans are considered “shared property” among the clients hitting the
application, with no association to any particular client. Backing beans, however, need to
have an association with a single client session in order to be consistent with the transac-
tions that the client is carrying out.

Message-driven EJBs are ruled out as backing beans for the same reason (the EJB
container manages message-driven beans much like stateless session beans), but also
because their purpose is to handle incoming JMS messages from clients. This isn’t really

CHAPTER 3 " COMPONENT FUNDAMENTALS

relevant when dealing with backing beans in a web context—the client is interacting
directly with the beans through their web requests. If any asynchronous and/or remote
messaging is necessary behind the scenes, the backing beans can act as clients to the JMS
destinations served by the message-driven beans. But having message-driven beans act
directly as backing beans for JSF views isn’t useful in general.

Action Listeners

Action listeners are used as the target of form submissions and command links in web
applications. They act as part of the controller in the MVC design pattern supported by
frameworks like JSF and Struts. Action listeners perform whatever business logic is neces-
sary to handle the data provided by users in their requests. This might include making
perisistence calls to store the information, changing the state of the user interface, or
whatever else is required to satisfy a user’s request.

As with backing beans, standard JSF supports the use of JavaBeans or POJOs as
action listeners, but Seam extends this to also support the use of some types of EJB com-
ponents as action listeners. The natural choice for an action listener is a stateful session
EJB, since its component model matches nicely with the life of an action listener—the
bean can hold state on behalf of a client (good for accepting data as part of a form sub-
mission), and the container can provide instance pooling for them (which helps in terms
of scaling up to support many web requests). Stateless session beans can also serve as
action listeners, but they are limited in the sense that they cannot carry any state (hence
the name). If you find yourself in a situation where the action listener really doesn’'t need
any state, stateless EJBs can provide some performance/scaling benefits (since they can
be freely pooled and reused by incoming clients). But you'll probably find that in most
cases the action listener needs to keep some state for the client, making a stateful session
EJB the best fit.

It’s technically possible to use entity EJBs as action listeners in Seam, but this isn't
usually the appropriate design choice. Action listeners typically implement business
logic, not just simple persistence operations. It often makes more sense to use a session
bean for the action listener, and then have the session bean implement any needed per-
sistence using internal calls to entity EJBs. But if you find yourself in a situation where an
entity EJB would really be handy as an action listener, Seam supports this.

Of course, if none of the EJB component services are useful for your situation, you
can still use a POJO as an action listener and still make use of the other Seam component
services this chapter will describe.

Browser-Accessible Components

There are times when you need to access your server-side components remotely, either
from another server-side process (potentially on a different server) or from a client. EJB

41

42

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

3.0 supports remote access (via RMI or CORBA) to session beans, and message-driven
beans are inherently remote-capable, since a JMS destination can typically be accessed
from distributed messaging clients.

The Seam component model introduces another form of remote access—direct
component calls from client-side JavaScript. As you can imagine, this capability was built
into Seam components primarily to support AJAX applications, where web user inter-
faces need to make server-side updates out-of-band of the regular HTTP request protocol
of the browser.

You can make just about any Seam component accessible in this remote fashion,
although accessing message-driven beans directly through an AJAX call doesn’t usually
make much sense. As we mentioned earlier about using them as backing beans,
message-driven beans are created to support JMS messaging clients. Invoking them
directly in addition to having the JMS “interface” usually means you are giving too much
responsibility to a single object. It’s likely a better idea to define a separate session or
entity EJB (or a simple POJO or JavaBean), and have both the browser JavaScript and the
message-driven bean invoke this separate bean to do the “heavy lifting.”

Full details on remoting components in Seam will be discussed in Chapter 8.

Extending the Gadget Catalog: Managing Types

To demonstrate the various types of Seam components and their runtime services, we’ll
create an extended version of the Gadget Catalog application introduced in Chapter 1. In
that version, the user was simply able to add new gadgets to the catalog by providing a
short description and choosing from a canned list of gadget types. These gadget types
were hardcoded into the system, in the form of the GadgetTypes enumeration. This isn’t a
very practical solution, of course, since the types of gadgets we might want to manage
will change over time. Changing the source code to keep up with the dynamic electronics
market is a losing battle, as any self-respecting gadgeteer will tell you.

So, we're going to extend our data model, as shown in Figure 3-1, to add a new
GADGET_TYPE table to store a type code and description for each gadget type. Our Ul page
flow will also be extended, as shown in Figure 3-2, to add a new branch that allows users
to create new gadget types. The gadget entry page will also be changed, to pull the type
list from the GADGET_TYPE table rather than a fixed enumeration.

— - GADGET_:;:E
GADGET_ID LONG n

] LABEL VARCHAR(20)
TYPE_ID LONG DESCR VARCHAR(500
DESCR VARCHAR(100) o

Figure 3-1. Updated Gadget Catalog data model

CHAPTER 3 " COMPONENT FUNDAMENTALS

— Add gadget Add gadget type
™~ — vt —

I:I

\ Save / \ Save / I:I

New Gadget Form New Gadget Type Form

Gadget List

Figure 3-2. Updated Gadget Catalog page flow

Of course, we'll have to make the code match up with these design changes, and we’ll
use these enhancements to demonstrate the Seam component services discussed in the
rest of this chapter.

Component Services

Now that you've been introduced to the types of Seam components and the general situ-
ations where they can be applied, we're going to look in detail at the specific runtime
services that Seam’s component model brings to the table for application development.
We'll do this by integrating these capabilities directly into the extended version of our
Gadget Catalog sample application.

Component Name Binding

Standard JSF components (backing beans or action handlers) are bound to names using
entries in the faces-config.xml. You saw an example of this in our “vanilla” Java EE ver-
sion of the Gadget Catalog, as shown in Listing 3-1.

Listing 3-1. Standard JSF Component Binding in faces-config.xml

<faces-config>

<managed-bean>
<managed-bean-name>gadget</managed-bean-name>
<managed-bean-class>Gadget</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

<managed-bean>
<managed-bean-name>gadgetAdmin</managed-bean-name>
<managed-bean-class>GadgetAdminAction</managed-bean-class>

43

44

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>gadget</property-name>
<value>#{gadget}</value>
</managed-property>
</managed-bean>

</faces-config>

In this case, we're binding two beans to JSF component names. Our Gadget bean is
bound to the component name “gadget”, and our GadgetAdminAction bean is bound to
the name “gadgetAdmin”. We can then refer to these components in our JSF pages. In our
addGadget. jsp page, for example, we use the Gadget bean as the backing bean for our
form:

<h:form>
<table border="0">

<tr>
<td>Description:</td>
<td>

<h:inputText value="#{gadget.description}"
required="true" />

</td>

</tr>

Seam extends and simplifies the configuration of components. It extends it to sup-
port the broader array of component types supported by Seam, as discussed earlier in
this chapter. Seam components can be POJOs, JavaBeans, or E]Bs, and they can be used
in JSF and non-JSF contexts, so naturally Seam can't rely strictly on JSF configuration files
to configure its components. Also, Seam simplifies component configurations by giving
you the option to specify these component name bindings using code annotations rather
than as entries in an XML configuration file. Seam also provides its own XML configura-
tion file, components.xml, for its components. But in most cases the preferred approach is
to use code annotations, so I'll spend the bulk of this section discussing that approach,
and then at the end I'll give some details on the components.xml file.

Seam’s primary code annotation for binding components is the @Name annotation.
Using the @Name annotation on a class will automatically bind an instance of that class to
a JSF component name. You've already seen this in action in our Gadget Catalog. We
bound our GadgetBean entity EJB to the “gadget” component name by annotating the
class as shown in Listing 3-2.

CHAPTER 3 " COMPONENT FUNDAMENTALS

Listing 3-2. Binding a Component Using an @Name Annotation

import org.jboss.seam.annotations.Name;

@Entity

@Table(name="GADGET")

@Name("gadget")

public class GadgetBean implements Serializable { . . . }

We did the same for our GadgetAdminBean class, binding an instance of it to the com-
ponent name “gadgetAdmin”.! This eliminated the need for the managed-bean entries in
our faces-config.xml. This may seem like a trivial convenience, but in applications where
you have a very large number of named components, it can be very convenient indeed to
avoid having to keep your faces-config.xml file synchronized with all of your code. Of
course, having the @\Name annotations distributed throughout your code makes it tougher
to track down the class that’s bound to a particular name, but thankfully Seam prints out
alog of all the name annotations that it finds, including the component name and the
fully qualified class name. And if it's more important for you to have a single place where
all components are configured, you can resort to using the components.xml configuration
file discussed at the end of this section, rather than the Seam code annotations.

These @Name annotations aren’t completely automatic, however. In order for Seam to
process these code annotations, you need to include a seam.properties file (an empty
one, if necessary) in the root of your archive file. If you place a seam.properties in your
archive, Seam will check every Java class packaged in that archive for component annota-
tions, and bind them to names according to their @Name annotations. If there is no
seam.properties file, no checking will be done, and your components won't be bound to
JSF names.

Why does Seam force you to flag your archives this way? Well, if an archive contains a
significant number of classes, parsing all of them for Seam annotations can be an expen-
sive operation. Even if it's only a one-time scan performed when an application is
deployed, you might like to avoid this when possible (e.g., to speed up repetitive deploy-
ments during development). In our Gadget Catalog example, all of our Seam components
are EJB components as well, and so they are all packaged within our EJB jar file. So we
placed an empty seam.properties file in our EJB jar, making the directory structure look as
shown in Figure 3-3.

1. Seam component names are case-sensitive, so be sure to use the exact name when referencing com-
ponents in EL expressions or directly in your code. There also seems to be a general trend to name
components beginning with lowercase letters, to avoid confusion with class names, which are typi-
cally uppercase.

45

46

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

= GadgetAdminBean.class
2 GadgetBean.class
= GadgetType.class
2 GadgetTypeList.class
= GadgetTypeListSGadgetTypeConverter.class
2 IGadgetAdminBean.class
= IGadgetTypeList.class
[~ META-INF
: gjb-jar.xmil
_| MANIFEST.MF
< istence. xmil
_| seam.properties

Figure 3-3. Seam-enabled EJB jar structure

Note The more inquisitive readers might be asking at this point, “How exactly does Seam trigger the
scan for component names?” Well, like most things in life, it’s really pretty simple once you see how it’s
done.

In Chapter 2, you saw that configuring an application to use Seam included the addition of a listener to the
web.xml deployment file:

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

This listener is the key to the component-naming magic (as well as several other Seam capabilities). When
the web container starts up the web context for the application, it initializes any listeners configured in the
web . xml file. The SeamListener, in its initialization routine, checks each archive that has been loaded with
the application for a seam. properties file (it does this through some class loader games that | won’t go
into here). If an archive contains this file, it's a simple matter (through other class loader games) to iterate
through all the classes loaded in that archive for @Name annotations. Each one that’s found is inserted into

a list of name bindings with the appropriate details needed to manage the component at runtime.

Configuring Seam Components with XML

As mentioned earlier, you can opt to configure Seam components using an XML file.
Rather than use an @Name code annotation, you can use a component entry in the Seam

CHAPTER 3 " COMPONENT FUNDAMENTALS

components.xml file. You first saw this configuration file in Chapter 2 when I discussed
general Seam installation and configuration. In that chapter, you saw how this configura-
tion file is used to configure core Seam services, which are themselves implemented as
Seam components. Now, you'll see how this same configuration file can be used for
application components as well. A quick reminder: the components.xml file must sit in the
WEB-INF directory of web archives and the META-INF directory of EJB archives.

In our Gadget Catalog application so far, we have two Seam components: gadget,
a GadgetBean instance, and gadgetAdmin, a GadgetAdminBean. We configured both of these
using @\Name annotations, as discussed previously. The equivalent configuration using
components.xml would look like the following:

<components>
<!-- Install the Seam core internal components -->

<!-- Configure Gadget Catalog components -->

<component name="gadget" class="GadgetBean"/>

<component name="gadgetAdmin" class="GadgetAdminBean"/>
</components>

These two component entries have the same effect as the @Name annotations we had
in the GadgetBean and GadgetAdminBean classes. The Seam runtime will bind instances of
each of these classes to the component names “gadget” and “gadgetAdmin’, respectively,
and we can reference them in our JSF pages.

The components.xml file supports other configuration options as well, but you'll get a
chance to explore those when I discuss the various other Seam services, in this chapter
and later in the book.

Life Cycle and Callbacks

Similar to other component frameworks, like EJB and web components in Java EE, Seam
provides life-cycle management services for its components. Once Seam knows about
your component (either through an @Name annotation or an entry in the components.xml
configuration file), it takes on the responsibility of managing your component’s life cycle
to some degree. In the case of EJB components that are also Seam components, this life-
cycle management needs to be compatible with the life-cycle services provided by the
EJB container. But the goal of Seam is to provide the services described here consistently
across all of its components.

During the life of the component, specific life-cycle events will occur. Seam allows
you to register callbacks that can be invoked when these events occur. These callbacks
are registered using code annotations in your component code.

47

48

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

Component Creation

Seam is responsible for creating components when needed during the lifetime of an
application. The creation of a component can be triggered by a number of things, such
as a form being submitted (requiring the associated backing bean to be created) or the
injection of a component value that hasn’t been initialized yet (as you'll see in the section
“Bijection” later in this chapter).

You can annotate a method in your component as a creation-time callback, using
the @Create annotation. You can only have one create callback method per component.
The create callback will be invoked by Seam just after it instantiates your component.
That makes it useful for various initialization tasks, like priming data collections or
connections to databases or other external resources.

Note that create callbacks can only be used on Seam components that are stateful
session EJBs or JavaBeans/POJOs. Entity beans can be constructed directly by clients, so
there is no way for Seam to guarantee that a create method would be called at the appro-
priate point in the bean life cycle. Stateless session beans, on the other hand, don’t really
support the concept of create callbacks because of their very simple life cycle.

Suppose we wanted to perform initialization like this on our GadgetAdminBean compo-
nent from the Gadget Catalog application. We would simply add an appropriate method
to our class and annotate it using the Seam annotation:

@Stateful

@Name("gadgetAdmin")

public class GadgetAdminBean implements IGadgetAdminBean {
@Create
public void init() {

// Do any initialization here . . .

}

Our GadgetAdminBean component is also a session EJB with a local interface
(IGadgetAdminBean) defined for it, so we also need to declare our init() method there:

@Local
public interface IGadgetAdminBean {

public void init();

Why? Because when the Seam runtime acquires an instance of our session bean from
the EJB container, it will usually be given a proxy class generated by the EJB container. In
order to ensure that the create callback is callable through the EJB proxy, we need to

CHAPTER 3 " COMPONENT FUNDAMENTALS

include it in the local interface (just like any other business method we want to be
callable on our EJB component). You see, from the perspective of the EJB container, the
Seam runtime is just like any other client, so it can only invoke operations that are
declared in the interface for the EJB component.

In this example, since the Seam component is also a session EJB, our init() method
will be invoked by Seam just after it’s acquired an instance of our bean from the EJB con-
tainer. If our component were a simple JavaBean, Seam would invoke the create callback
just after it had instantiated an instance of the JavaBean.

Component Destruction

Seam also provides callbacks for component destruction. Seam only destroys compo-
nents when the scope/context that contains them is destroyed.

A destroy callback method is annotated using the @estroy annotation from Seam. In
the case of our GadgetAdminBean session EJB, the destroy() method was our Seam destroy
callback:

@Remove
@Destroy
public void destroy() {}

Destroy methods are only supported on Seam components that are stateful session
beans or JavaBeans/POJOs. When the component is a stateful session EJB, the destroy
method must also be an EJB remove method, annotated with an @Remove annotation, as
shown in the preceding code snippet.

Destroy methods serve largely the same role as remove methods in EJB, but like
Seam’s create methods, they can be used with non-EJB Seam components as well.

Component-Driven Events

Seam also supports callbacks tied to a “life-cycle” service of sorts—component-driven
events. A component can register one or more callback methods for any component-
driven event, using either an @bserver annotation on the method or an entry in an
events.xml configuration file. I'll discuss component-driven events in detail in Chapter 5,
which covers structured pageflow services provided by Seam.

Using EJBs As JSF Managed Beans

In standard JSE all managed beans (action listeners and backing beans) are treated as
regular JavaBeans/POJOs. In terms of life-cycle management, for example, when the

49

50

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

bean is first needed, an instance is constructed directly by the web container and placed
into the JSF scope specified in the managed-bean entry in faces-config.xml.

The assumption that managed beans are POJOs means EJB components can’t be
used directly, because they have different container contracts. Session beans, for exam-
ple, should always be created by the container, so that it can do all the required instance
pooling and other runtime services for the EJB. In short, if you try to use EJB components
directly as managed beans in standard JSE bad things may happen.

Instead, without Seam to help you out, you need to resort to creating POJO facades
around your EJB components when you need to integrate them into your JSF event han-
dling. You saw this in Chapter 1 in the Java EE (non-Seam) version of our Gadget Catalog.
Since we were using standard JSF in that case, we needed to wrap our GadgetAdminBean
session EJB and GadgetBean entity EJB with a GadgetAdminAction POJO. In addition, we
needed to create a JavaBean value object (Gadget) analogous to the GadgetBean EJB to
use as the backing bean for our JSF forms. The GadgetAdminAction translated Gadget
objects into GadgetBeans (and vice versa) and acted as a proxy action listener for the
GadgetAdminBean EJB. The result was the (overly complex) class relationships shown in
Figure 3-4.

Managed Bean

(JSF Page) (POJO Fagade)

listGadgets.jsp <:::>E GadgetAdminAction <:::> GadgetAdminBean
! (Session EJB)

P il

Managed Bean

addGadget.jsp E Gadget E <:::> GadgetBean
(JSF Page) <ﬁ> (POJO Facade) ! (Entity EJB)

Figure 3-4. Typical integration of EJBs into JSF without Seam

Seam bridges the JSF component model with the EJB component model, allowing
you to use EJB components directly as JSF managed beans. Seam ensures that the EJB
container contracts are honored when EJB-based managed beans are required, allowing
the EJB container to manage the services it provides, while still allowing the JSF environ-
ment to safely pass along Ul data and events to these components.

You've already seen this in action in the Seam version of our Gadget Catalog. In
Listing 3-2, you can see that we've annotated the same GadgetBean class as an entity EJB
and named it as a JSF component using a Seam @Name annotation. This is equivalent to
specifying the EJB class in a managed-bean entry in the faces-config.xml configuration file,
which isn’t possible without Seam.

CHAPTER 3 " COMPONENT FUNDAMENTALS 51

With Seam in the mix, the class design of our Gadget Catalog application becomes a
lot simpler, as shown in Figure 3-5.

Managed Bean

listGadgets.jsp GadgetAdminAction
(JSF Page) <E> : (Session EJB) :
' ManagedBean :

addGadget.jsp : Gadget :
(JSF Page) <:::> (Entity EJB) :

Figure 3-5. Simplified class design under Seam

Note Again, astute readers might be wondering at this point exactly how Seam manages to bridge EJB
components and JSF managed beans. And again, | have to say that it’s all pretty simple once you are
exposed to the details. Part of the puzzle is provided by the same SeamListener that handles the @Name
annotations discussed in the previous section. The other part of the puzzle is the Seam JSF phase listener,
configured in the faces-config.xml. As | mentioned earlier, the SeamListener runs when the web appli-
cation is loaded, locating all the named components in your application and registering them as Seam
components. The JSF phase listener ensures that, when a reference to a managed bean is made, through
an EL variable or some other means, and if that bean is actually a Seam component, then the proper runtime
handling of the component is made, depending on its component type. If the component is a session EJB, for
example, the necessary EJB container interactions are made to ensure that the component’s EJB services
are managed properly at runtime.

Extending the Gadget Catalog

Now, we're supposed to be extending the Gadget Catalog to support user-defined gadget
types, as described earlier. Making this change is quite a bit simpler in Seam than without
it. We want to store gadget types in the database to make them both persistent and
extendible, and the obvious approach to doing that would be to change the GadgetType
enumeration into an entity EJB. The result is shown in the GadgetType entity E]JB in

Listing 3-3.2

2. You'll notice that all of our entity beans implement the java.io.Serializable interface. While not
strictly necessary in all cases, it’s a good practice to follow, since many EJB containers will attempt to
serialize your entity beans for caching and other reasons.

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

Listing 3-3. Entity Bean for Gadget Types

@Entity

@Table(name="GADGET TYPE")

public class GadgetType implements Serializable {
private long mld;
private String mLabel;
private String mDescr;

public GadgetType() {}

@Id @GeneratedValue

@Column(name="TYPE_ID")

public long getId() {
return mid;

public void setId(long id) {
mId = id;

@Column(name="DESCR")
public String getDescription() {
return mDescr;

public void setDescription(String descr) {
mDescr = descr;

@Column(name="LABEL")
public String getlabel() {
return mLabel;

public void setlabel(String label) {
mLabel = label;

}
public boolean equals(Object comp) { . . . }
public int hashCode() { . . . }

};

CHAPTER 3 " COMPONENT FUNDAMENTALS

This is a simple entity bean, with a generated id field acting as the primary key for
the types, and both a label and description for the type. The label will be used in situa-
tions where a short type description is needed (e.g., menus in a web form), and the
description will serve as a more detailed description of the meaning and scope of the
gadget type.

The next step in our refactoring exercise would be to adjust the GadgetBean entity EJB
to use a GadgetType for its type property, rather than the string used in the earlier version.
This change matches up with the updated database model we saw back in Figure 3-1 for
the revised Gadget Catalog, and it also makes sense from a design perspective. The
changes to our GadgetBean entity bean are fairly straightforward, as shown in Listing 3-4.

Listing 3-4. Updated GadgetBean Entity EJB

@Entity

@Table(name="GADGET")

@Name("gadget")

public class GadgetBean implements Serializable {

private GadgetType mType;

@anyToOne (optional=false)

@JoinColumn(name="TYPE_ID")

public GadgetType getType() {
return mType;

}

public void setType(GadgetType t) {
mType = t;

}

The type property has been changed to be a GadgetType, and the persistence annota-
tions on the getType() accessor have been updated to specify that this is a many-to-one
relationship to the GadgetType entity, keyed by the TYPE_ID column in the updated GADGET
table. The remainder of our GadgetBean has remained unchanged from the earlier version,
and those parts of the code have been omitted here for brevity.

Up until this point, all of the changes we’ve made would have been necessary
whether we were using Seam or not. But now we need to plug our GadgetType entity EJB
into the JSF UI, and that’s where Seam helps us out in a few ways.

First, we need to create a JSF form to add gadget types to the Gadget Catalog. With
Seam in the mix, this is a simple matter. First we create a form much like the one we used
to add gadgets to the catalog. The addGadgetType. jsp page is shown in Listing 3-5.

53

54 CHAPTER 3 ©" COMPONENT FUNDAMENTALS

Listing 3-5. /SF Page for Adding New Gadget Types

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="+"%>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>

<html>
<head>
<title>Add a Gadget Type</title>
</head>
<body>
<frview>
<h:form>
<table border="0">
<tr>
<td>Label:</td>
<td>
<h:inputText value="#{gadgetType.label}"
required="true" />
</td>
</tr>
<tr>
<td>Description:</td>
<td>
<h:inputText value="#{gadgetType.description}"
required="true" />
</td>
</tr>
</table>
<h:commandButton type="submit" value="Create"
action="#{gadgetAdmin.newGadgetType}" />
</h:form>
</fiview>
</body>
</html>

In this new JSF form, we're referencing a new backing bean, “gadgetType”, to hold the
values of the label and description fields being entered by the user. Seam allows us to use

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://jboss.com/products/seam/taglib

CHAPTER 3 " COMPONENT FUNDAMENTALS

our GadgetType entity EJB directly as this backing bean by simply putting an @Name annota-
tion on our class:

@Entity

@Table(name="GADGET TYPE")

@Name("gadgetType")

public class GadgetType implements Serializable { . . . }

If we were using straight JSE we would have had to create another proxy POJO for
our GadgetType EJB, and added converters for it somewhere so that the managed bean
could be converted into a GadgetType to be persisted, and vice versa. With Seam, none
of that is necessary, and our new form to create gadget types is ready to go.

We also need to adjust our “add gadget” JSF page, addGadget . jsp, so that the drop-
down list of gadget types is pulled from the new GADGET _TYPE table. This is where Seam
helps us in a more subtle way. Our addGadget.jsp page uses a JSF selectOneMenu compo-
nent to render the drop-down list of types, with a selectItems child element that pulls in
the list of choices for the menu. In the Gadget Catalog version in Chapter 1, we used the
selectOneMenu like so:

<tr>
<td>Type:</td>
<td>
<h:selectOneMenu value="#{gadget.type}"
required="true">
<f:selectItems value="#{gadget.gadgetTypes}" />
</h:selectOneMenu>
</td>
</tr>

The value attribute on a selectItems component needs to be either a single
SelectItem object, an array or Collection of SelectItem objects, or a Map containing keys
and values that can be used as labels and values (respectively) on select items. When the
gadget types were represented by an enumeration, we were able to map the type values
into the UI component by simply generating a Map<String,String> collection that used
the enumeration labels as the keys, and the enumeration names as the values in the map.
The value chosen in the selectOneMenu component was the unique name of the enumera-
tion, which was just fine for our purposes in that version, since that’s all we needed to
populate the type property on our GadgetBean class (the value stored in the TYPE column of
the GADGET table). The Map of labels and names was accessed through a getGadgetTypes()
utility method on the GadgetBean class:

55

56 CHAPTER 3 ©" COMPONENT FUNDAMENTALS

@Transient
public Map<String,String> getGadgetTypes() {
Map<String,String> types = new HashMap<String,String>();
for (GadgetType value : GadgetType.values()) {
types.put(value.label(), value.name());
}

return types;

In our new model, however, our GadgetBean. type property isn’'t a simple string name
anymore. It’s a reference to an instance of our new GadgetType entity bean. Ideally, we'd
like to have JSF map the user’s type selection in the “add gadget” form to an appropriate
GadgetType value, and assign that to the GadgetBean.type property directly. In order to
make this work, we can’t just use a simple Map<String, String> anymore. We want to use
aMap<String, GadgetType>, mapping menu selections to actual GadgetType instances. JSF
supports this, but we'll need to define a JSF javax.faces.convert.Converter that will map
GadgetType objects into unique string values for the select list, and then back again from
selected strings into GadgetType instances. This is straightforward enough to do—we
simply need to define a JSF Converter subclass and implement its getAsString() and
getAsObject() methods to do the appropriate conversions. The converter will need to
maintain a list of valid GadgetType instances in order to implement the getAsObject()
conversion from type IDs to GadgetType instance. The GadgetTypeConverter shown in
Listing 3-6 accepts a list of valid GadgetType values in its constructor and uses this refer-
ence list in getAsObject().

Listing 3-6. Converter to Allow GadgetType Objects to Be Used in JSF Select Lists

public class GadgetTypeConverter implements javax.faces.convert.Converter {
private List<GadgetType> mTypes;

public GadgetTypeConverter(List<GadgetType> types) {
this.mTypes = types;

public String getAsString(FacesContext ctx, UIComponent comp,
Object obj) {
if (obj == null) return null;

GadgetType type = (GadgetType) obj;
String val = String.valueOf(type.getId());

CHAPTER 3 " COMPONENT FUNDAMENTALS

return val;

public Object getAsObject(FacesContext ctx, UIComponent comp,
String strval)
throws ConverterException {
if (strval == null || strVal.length()==0) {
return null;

long id = Long.valueOf(strVal).longValue();
for (GadgetType type : mTypes) {
if (type.getId() == id) {
return type;

return null;

Next, we need to load the set of GadgetType values from the database to populate
the select list, and also to initialize the GadgetTypeConverter. The list of GadgetType
values is going to be changing on the fly, however, because of the introduction of the
addGadgetType. jsp page. We need to be sure that the latest set of GadgetType values is used
to populate the select list whenever it is displayed.

The obvious next step is to assign these responsibilities to a class that can be used as
a component by the JSF page. This class will be responsible to get the current values for
the select list from the database, and to manage the Converter to ensure that it has the
latest set of GadgetType values to use for the conversions.

This is where Seam’s EJB-to-JSF bridge helps us out (again). Some of the EJB con-
tainer capabilities are useful here. For one thing, we need to cache the GadgetType list
in such a way that any updates to the list will be loaded automatically. Using the EJB
life-cycle services along with entity EJB persistence seems like a good idea. We also need
this component to be fairly scalable, since every user hit on the “add gadget” page will
depend on it. Session beans with instance pooling seem like a great fit for this. But
without a way to directly use an EJB as a JSF component, we'd need to create a POJO/
JavaBean facade around our EJB layer, much like the GadgetAdminAction POJO we were
forced to create in the non-Seam example in Chapter 1.

57

58

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

With Seam, we can create a single session EJB that handles all the responsibilities we
just described, and also serves as our JSF component backing up the GadgetType select
list. Our solution to this, the GadgetTypelist bean, is shown in Listing 3-7.

Listing 3-7. Session EJB That Manages GadgetType Lists for the Ul

@Stateful
@Name("gadgetTypelList")
@Scope(ScopeType.EVENT)
public class GadgetTypelist implements IGadgetTypelist, Serializable {
// All gadget types pulled from the database
private List<GadgetType> mGadgetTypes;
// Map to be used for select lists in the UI
private Map<String,GadgetType> mGadgetTypeMap;
@PersistenceContext
EntityManager em;
/** When this bean is created, load up the types and
* populate the internal map */
@Create
public void loadTypes() {
// Load up the types from the database, ordering them by label
mGadgetTypes =
em.createQuery("select gt from GadgetType gt order by gt.label")
.getResultlist();
// Convert the list into a map. We use a TreeMap in order
// to preserve the ordering we asked for in the query
// above.
Map<String,GadgetType> results = new TreeMap<String,GadgetType>();
for (GadgetType type: mGadgetTypes) {
results.put(type.getlabel(), type);
}
mGadgetTypeMap = results;
}
public Map<String,GadgetType> getAllTypes() {
return mGadgetTypeMap;
}
/*
* Get a converter initialized with the current list of types
*/
public Converter getConverter() {
return new GadgetTypeConverter(mGadgetTypes);

CHAPTER 3 " COMPONENT FUNDAMENTALS

@Remove @Destroy
public void destroy() {}

We've made this a stateful session EJB with an @Create method, loadTypes(), that
loads up all the current GadgetType values from the database when the bean is created
by the EJB container. This method creates a list of these types to be used with the
GadgetTypeConverter, as well as Map from the type labels to their corresponding
GadgetType instances. This Map will be used by the JSF Ul in its select menu, through
the getAl1Types() accessor method.

The getConverter () accessor method provides access to the GadgetTypeConverter.
Here, the GadgetTypelist component initializes a converter with the current list of

GadgetType instances and returns it. We tie this all into the JSF UI by referencing this
component in the selectOneMenu JSF element in addGadgets. jsp. The relevant portion
of this JSF page is shown here:

<tr>
<td>Type:</td>
<td>
<h:selectOneMenu value="#{gadget.type}"
converter="#{gadgetTypelList.converter}"
required="true">
<f:selectItems value="#{gadgetTypelist.allTypes}" />
</h:selectOneMenu>
<!-- Link to add a new gadget type -->
<s:link action="addGadgetType">
<h:outputText value="[Add a new gadget type]"/>
</s:link>
</td>
</tr>

We're linking the selectOneMenu input field to the type property on the gadget compo-
nent, which is now a GadgetType value. We set the converter property on the select menu
to be the converter property on our GadgetTypelList component, using the JSF expression
#{gadgetTypelList.converter}. In Listing 3-7 you can see that we’'ve bound an instance of
our GadgetTypelist to the component named “gadgetTypeList”, which is how this compo-
nent reference works. Finally, we're using a selectItems child element that references the
allTypes property on our GadgetTypelist, which returns the Map that was generated in the
loadTypes() method.

59

60

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

This takes care of the GadgetType conversion, and the initial loading of the
GadgetTypes from the database, but how, you may ask, are we dealing with the caching
issue? What happens when someone uses the addGadgetType. jsp page to add a new type
to the database, invalidating the list of GadgetType instances loaded up by this compo-
nent? Well, we're using a little EJB and a little Seam to solve that problem. First, as you
can see in the class annotations in Listing 3-7 we've declared the GadgetTypelist as a
stateful session bean. That may seem a bit odd, since this component doesn’t really keep
any client-specific state. But this allows us to put the component into the Seam event
context, using the @Scope annotation. You'll learn more about Seam scopes in the next
chapter when I discuss Seam contexts and the concept of conversations, so for now you’ll
have to take my word on this part of the solution. In effect, the combination of a stateful
session bean and event scope creates a simplistic but effective cache flushing scheme.
The type data is loaded in to support the user event, flushed when the event is over, and
then reloaded again the next time around. This isn’t the most scalable solution in the
world, since the cache only lasts for the duration of a request, but it demonstrates how
Seam allows us to make direct use of EJB services without additional design overhead.

Bijection

Several Java EE APIs (EJB, JSE etc.), as well as popular open source frameworks like
Spring, make use of the concept of dependency injection. Injection involves the auto-
matic, runtime insertion of a property value into a bean. This simple concept can greatly
simplify development, especially in a Java EE environment. Tedious things like JNDI
resource lookups, for example, can be eliminated and replaced with a simple annotated
member variable on a bean class, or an entry in an XML configuration file. In fact, we
made use of Java EE injection capabilities in the Java EE version of our original Gadget
Catalog in Chapter 1. Our action listener POJO, GadgetAdminAction, used the @EJB annota-
tion defined in EJB 3.0 to inject a reference to a stateless session EJB, GadgetAdminBean:

public class GadgetAdminAction implements IGadgetAdminAction {
@EJB
private IGadgetAdminBean mGadgetAdmin;

At runtime, the web container picked up this annotation and injected a
GadgetAdminBean instance, assigning it as the value of the annotated mGadgetAdmin
instance variable. This saved us the trouble of doing a JNDI lookup to get a
GadgetAdminBean instance in our code.

Seam’s bijection model expands on this basic injection concept in a few significant
ways, to create what they call their bijection model:

CHAPTER 3 " COMPONENT FUNDAMENTALS

* It supports injection as well as what Seam calls outjection, meaning that a compo-
nent can also “export” a value out as the value of a named component.

¢ Seam performs ongoing, dynamic injection of a given value during the life of a
component. Many injection models simply inject a value once, for example, when
the target component is initialized or when some specific life-cycle event occurs.
Seam updates an injected value on an ongoing basis.

¢ It supports Seam’s context/scope model. You'll learn more about this aspect in the
next chapter, where I cover contexts and conversations.

Let’s start with Seam’s version of simple injection, and then move on to the extended
services that make up their bijection model.

Simple Injection

As you might expect, you can also use injection with Seam components. After all, the goal
of Seam is to add value, not take it away. In Seam, the @In annotation is used to inject
Seam components into other Seam components. The simplest use of this annotation is
demonstrated here:

@Name("handler")
public class MyHandler {
@In
private SomeBean formBean;

public SomeBean getFormBean() { return formBean; }

public void setFormBean(SomeBean b) {
formBean = b;

public String myAction() {
Object data = formBean.getSomeProperty();

Here, we're annotating the formBean property on the Seam component MyHandler,
telling Seam to inject the value of this property whenever MyHandler is invoked. In this
case, we haven't specified any details about where the value of this property should be
injected from—we're using @In with no arguments. By default, Seam will search all of its
contexts for a component with the same name as the annotated property, “formBean”.
The first one it finds (in an ordered search of contexts, starting from the event context

61

62

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

and ending with application context) is used as the value of the annotated property. If no
component of the given name is found anywhere, the injection will not happen, and the
property will remain uninitialized.

The @In annotation can be applied on class data members or accessor methods.
In the preceding example, we could have also chosen to annotate the getFormBean()
accessor:

@In
public SomeBean getFormBean() { return formBean; }

As you might expect, you can also explicitly specify the Seam component name to be
used for the injection. If we had a component named “productDetails” that we wanted
injected into our MyHandler, we'd use the value attribute on the annotation to specify that:

@Name ("handler")

public class MyHandler {
@In(value="productDetails")
private SomeBean formBean;

You can also use JSF expressions to specify the value to be injected into the field or
property. In the preceding example, suppose there was a component named “product”
that had a property named “details” that we wanted injected instead. We could then use
an expression for the value attribute:

@In(value="#{product.details}")
private SomeBean formBean;

The @In annotation supports three other attributes. The scope attribute specifies
which Seam context to search for the component. I'll discuss Seam contexts in more
detail in the next chapter. The other two attributes allow you to control when and how
Seam deals with uninitialized components during injection.

The required attribute specifies whether the injected component must be nonnull
or not. By default, this attribute is true, which means that if the component to be injected
is not initialized when the injection occurs, an exception is raised by Seam. If you set the
required attribute to false, Seam will allow the injected value to be null.

The create attribute specifies whether Seam should create an instance of the speci-
fied component when it’s found to be uninitialized during injection. By default, this
attribute is false, meaning that Seam will not attempt to do any initialization of its own
during injection.

CHAPTER 3 " COMPONENT FUNDAMENTALS

We have made good use of simple Seam injection in our Gadget Catalog application.
On our GadgetAdminBean session EJB, we're injecting the value of the named “gadget”
component:

@Stateless
@Name ("gadgetAdmin")
public class GadgetAdminBean implements IGadgetAdminBean {

@In(value="gadget", create=true)
private GadgetBean mActiveGadget;

Remember that the component named “gadget” is the GadgetBean instance we're
using as the backing bean for the addGadget. jsp page. We're using the value attribute on
@In here because the name of the component we want injected (“gadget”) does not
match the name of the property we want set (“mActiveGadget”). We're also setting the
required attribute to false, because depending on the page flow the user takes, we may
invoke action listener methods on our GadgetAdminBean before the gadget component has
been initialized in the UL

Outjection

As mentioned at the start of this section, Seam extends simple injection by introducing
the concept of outjection, or the export of a component value from one component back
into the scope where the component lives.

In our earlier example, we injected the formBean component into the MyHandler com-
ponent, and then used the injected bean value in the myAction() action listener method.
Suppose that method was extended to update the value of the formBean component:

public String myAction() {
Object data = getSomeData();
formBean.setSomeProperty(data);

If we wanted the other parts of the application to see this change, we could outject
our formBean property back out into the Seam context, using the @0ut annotation:

@In
@0ut
private SomeBean formBean;

63

64

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

The @0ut annotation can also be applied to either fields or property accessors on
Seam components. If you want to annotate the accessor method, however, you need to
place the @0ut annotation on the getter rather than the setter, since we're exporting
the value from the component. And similar to injection, outjection occurs each time
the Seam component is invoked, but at the end of the invocation rather than at the
beginning.

The @0ut annotation has value, required, and scope attributes that behave analo-
gously to the @In attributes of the same names. The differences are related to the export
versus import of data values.

The value attribute specifies the name of the component that should have its value
set to the annotated field or property. If no value attribute is specified (as in the preceding
example), the name of the annotated field or property is used as the name of the target
component. In our case, the component named “formBean” will be set to the value of the
MyHandler.formBean field, since we haven't used the value attribute, and the annotation is
on the formBean field.

The required attribute also behaves similar to the required attribute on @In. If this
attribute is true (the default), the outjected bean value must be nonnull, or an exception
will be raised by Seam. If required is false, the bean can be null, and the target bean will
have its value set to null as well.

The @0ut annotation also has a scope attribute that allows you to specify the target
context of the outjection. Again, you'll get a detailed look at Seam contexts in the next
chapter, but here’s a quick summary of how outjection works in terms of the target
component’s scope:

* Ifyou specify the target scope, Seam will look for a component of the correct name
in the specified scope and assign the exported value to it if found.

* If you don’t specify a scope, Seam searches bottom-up (starting from the event
context and moving up through the page, conversation, session, business process,
and application contexts) for a component with the appropriate name. That
component will have its value set to the exported value.

* Ifno scope is specified and no matching named component can be found in any
scope, the exported value is assigned to a new component in the event scope.

In the updated Gadget Catalog, we made use of Seam’s outjection to improve usabil-
ity when new gadget types are added to the catalog. We've made the assumption that,
when users add a new type to the catalog, they probably intend to use that type when
they add their next gadget in the “add gadget” page. Making this happen is just a matter
of exporting the value of the activeType property on our GadgetAdminBean component:

@Stateless
@Name("gadgetAdmin")

CHAPTER 3 " COMPONENT FUNDAMENTALS

public class GadgetAdminBean implements IGadgetAdminBean {

@In(value="gadgetType", required=false)
@0ut(value="#{gadget.type}", required=false)
private GadgetType mActiveType;

Remember that the GadgetAdminBean.newGadget () method is used as the action lis-
tener for the addGadgetType.jsp form. The preceding @In annotation injects the value
of the gadgetType backing bean from that form into the activeType property before the
newGadgetType() method is invoked. After the newGadgetType() method completes, the
@out annotation tells Seam to export the value of the new GadgetType to the type field on
the gadget component. When the addGadget . jsp form is rendered, this property on the
gadget component is used as the value for the type menu, as you saw earlier:

<h:selectOneMenu value="#{gadget.type}"
converter="#{gadgetTypelist.converter}"
required="true">
<f:selectItems value="#{gadgetTypelList.allTypes}" />
</h:selectOneMenu>

The result is that the newly created gadget type will be preselected in the “add
gadget” form.

Dynamic Bijection

As opposed to some injection models, Seam’s model is dynamic in nature, not a one-time
injection event. The injection and outjection specified in the @In and @ut annotations on
a given component will be carried out every time a Seam component is invoked.

If this weren’t the case, the bijection wouldn't have been much use to us for setting
the default gadget type in the previous section. We need to have the GadgetAdminBean.
activeType property exported to the type property of the gadget component every time
the GadgetAdminBean is invoked, because the user is going to add new types over time as
they are needed. The same component, gadgetAdmin, is being used as the action listener
for all these transactions, so we need to export the value every time.

If bijection was a one-time event, we would be forced to play games with the scope
of the gadgetAdmin component so that it goes out of scope and is reinitialized, triggering
the injection/outjection again. But this isn’t the case, luckily for us.

65

66

CHAPTER 3 ©" COMPONENT FUNDAMENTALS

Summary

In this chapter, we've explored the fundamentals of Seam’s component model, which
serves as the core of all of the Seam framework features that we’ll examine in the rest of
this book. The Seam component model serves as a bridge between the JSF and EJB com-
ponent models, allowing EJBs to be used directly as JSF managed beans. The Seam
component model also serves as a unified model for the other Seam framework capabili-
ties, such as pageflow, security, and business process management.

Seam components can be bound to names using @Name annotations. You also have
the option to use the components.xml configuration file, if you'd prefer to use external XML
configuration. The @Name annotations also publish components as JSF managed beans,
allowing you to avoid faces-config.xml configuration entries.

Seam components also support bidirectional dependency injection, or what Seam
calls “bijection.” With bijection, in addition to injecting components into properties on
other components, you can also outject components into the various Seam contexts after
action methods and other life-cycle methods are completed.

CHAPTER 4

Contexts and Conversations

In this chapter, we explore Seam’s context support, which is an extension of the contexts
supported by Java EE web containers. Most of the focus will be on Seam conversations,
which is a key new capability provided by the Seam framework. But first, as background,
I introduce you to all of the new contexts supported by the Seam component model.

Seam Component Contexts

One of the keys to the Seam component model is its extended set of scopes, also referred
to as runtime contexts. These contexts are familiar to anyone who has developed web
applications based on servlets, JSPs, and/or JSE Runtime data can be assigned to various
contexts, and the scope of the data is defined by the duration of the context and the
access that is allowed to the context. Session contexts, for example, last for the duration
of a single user’s session with an application, and the data contained in a session is only
accessible to a single user. Application contexts, on the other hand, last for the duration
of the entire application, and the data contained in them is potentially accessible to all
users using that application.

Session data is probably the most commonly used context in servlet/JSP/JSF appli-
cations. Each user is given a session context when he or she enters an application, and
your server-side code can put data associated with the user into his or her session con-
text. The scope of the session is the user’s active period with the application, and the
access to the session is limited to just the user who owns the session.

Figure 4-1 depicts the contexts that are defined within the standard JSP/JSF environ-
ment. A global application context covers all runtime data managed by a particular
application. Application data is available during the processing of any user request. Every
user is given a session context, as I already mentioned. The session starts when the user
first interacts with the application from his or her browser, and lives until it is either auto-
matically or explicitly ended. A session can be ended by several events—the application
can explicitly kill off a session because the user hits a “logout” link, or the requests from
the user might stop for an extended period of time, causing the session to be expired
by the server.

67

68 CHAPTER 4 © CONTEXTS AND CONVERSATIONS

Application

Request Request

Request Request ~ Request

(Time r\/‘

Figure 4-1. Standard JSP/JSF contexts

Within each user session are subcontexts that arise as the user interacts with the web
application. Every user request has its own context and can hold data that lives only for
the duration of that request. Any given request might involve multiple pages (a JSP may
include other JSPs in its view, and/or a user request might be forwarded on the server to
other pages). Each page can have its own runtime context, with data that only lives
within that page invocation.

Seam’s component model extends the runtime context structure, as shown in
Figure 4-2. The application, session, request, and page scopes are essentially the same
as what is supported by standard JSP/JSF containers.! Seam adds the concept of a user
conversation, which segments a user’s session into independent data contexts, as well as
a context that covers the scope of an entire business process, which is in effect broader in
scope than even the application scope, because it can persist across the lifetime of the
application.

1. Note that JSF and JSP use the term “request” scope, while Seam uses the terms “request” and “event”
intermittently in its documentation to refer to this same context. In this chapter and for the rest of the
book, I will try to use the term “request” consistently.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Business Process
Application
Session Session

1 . . .
Convt(ratmn Conversation Conversation

Request Request Request
%?
I
Session

Conversation Conversation Conversdtion
Request Request Request RequeFt

1
I
Conversation |
Request Request
1
1

Figure 4-2. Seam’s extended context model

I'm going to defer discussion of the business process context until Chapter 7, which
dives into business process modeling (BPM) with Seam. For the remainder of this chap-
ter, we're going to take a look at Seam’s conversation model and what practical benefits it
brings to the table.

Seam Contexts and the JSF Life Cycle

Before we dive deep into the practical aspects of Seam conversations, it’s important to
take a brief foray into some background material. Seam manages the various contexts in
its component model within the larger structure of the JSF life cycle. When you first start
to experiment with Seam contexts, the interaction of Seam with the JSF process is proba-
bly going to be the first place that you scratch your head and wonder, “Why isn't this
working the way I expect?” So take a few minutes now and get to know a little about how
Seam integrates with JSE

69

70

CHAPTER 4 © CONTEXTS AND CONVERSATIONS

Figure 4-3 shows the standard phases of the JSF request processing life cycle, and
how Seam plugs itself into these phases with its JSF phase listener. You've already seen how
Seam’s phase listener is installed in the faces-config.xml file of your web application. This
figure depicts what the listener is actually doing at runtime to manage the Seam contexts
(among other things).

JSF/Seam Contexts

Phase Listener ﬁ

. Callbacks
Faces Request e Seam 1
Life Cycle A Faces Response '
1
Nonflaces Nonfaces
ﬁ Response Request
— 1
1
: Seam Phase Render [N .
Restore view Listener response .

Apply Invoke

request LOL
values application

Phasé Listener
Callback Points

VEUGEUE values

1
LI
- Process Update model
1
1
1
1
1

JSF Request Processing
"Shortcuts" +-eeet

Figure 4-3. /SF request processing phases and Seam’s phase listener

As shown in the figure, JSF-registered phase listeners are invoked before and after
each phase in the JSF request life cycle, through an event notification pattern. This allows
frameworks like Seam (or your own application code, if you want) to perform their own
life-cycle processing. In the case of Seam, these phase events are used to implement
Seam’s own context life cycle, including the management of Seam’s extended set of con-
texts.

I'won’t go into a lot of detail here about the JSF request life cycle itself (that’s better
covered in material specifically on JSF). But the following are short descriptions of what
generally happens in each of the JSF phases:

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

* Restore view: Determine the intended target view for the request, and either create
it (if it doesn't exist yet) or restore it (if it does exist already).

» Apply request values: Update all the UI components involved in this request with
the data passed in with the request (form fields, cookie values, etc.).

* Process validations: Run all registered validators against the data values set by the
request.

* Update model values: If the previous phases were successful (i.e., all Ul component
fields have been set and validated), the registered managed beans in your applica-
tion model will be updated in this phase, using the values processed in the
previous phases.

* Invoke application: Any registered application callbacks are invoked in this phase.
This includes any action listeners you may have configured.

¢ Render response: Once all the application processing is complete, the view and all
of its Ul components are asked to render the intended response for the client.

As the figure shows, Seam’s phase listener receives phase events before and after each
JSF life-cycle phase, and it uses these event notifications to implement key elements of
its component model. Although Seam receives notifications at all phase boundaries in
the JSF life cycle, the key activities are performed in the three stages highlighted in Figure
4-3, namely:

* Before “restore view”: At this point, Seam simply initializes its internal references
to the various contexts. For contexts that are shared with JSF (such as the session
context), the context reference is extracted from the FacesContext. Seam-specific
contexts, such as the conversation context, are initialized if needed, or pulled from
storage if they already exist (e.g., long-lived, explicit conversations).

e After “restore view,” before “apply request values”: Seam initializes the current con-
versation context. Seam ensures that the conversation state is in sync with the
session and the request parameters. If, for example, a request was made to switch
to another conversation, the conversation ID is pulled from the request parame-
ters, and the referenced conversation is restored.

e After “render response”’: Seam removes any expired contexts, stores any long-lived
contexts (like explicit conversations), and cleans up the internal structures used to
manage the various contexts.

The practical implications of the actions performed by the Seam phase listener will
become clear in the rest of the chapter, as we explore Seam’s contexts, especially the
support for conversations.

7

72

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Gadget Catalog: Conversational Gadgets

In keeping with this book’s practical treatment of Seam, let’s define some extensions to
our Gadget Catalog application that demonstrate the conversation features of Seam.

While the Gadget Catalog has served this book’s purpose so far in terms of demon-
strating Seam’s basic component model, it’s ridiculously simple. The model for gadgets
isn't very realistic—a single string type, name, and description associated with a gadget.
Even with this simplistic model, the Ul is very limited. All we can do is create new gadgets
and view them in a list. No update or delete operations, and no searching. In order for
our Gadget Catalog to become truly useful, both the model and the operations supported
in the Ul need to be extended.

We'll start with the object model. We haven’'t used object models in our design so far,
but now that we're pushing for a realistic application, it’s a good time to start keeping a
UML class diagram for our object model. The revised object model we'll target for this
revision of the Gadget Catalog is shown in Figure 4-4. Our Gadget now supports multiple
types (e.g., a printer can be a copier and a fax machine at the same time, a mobile phone
can be a media player, etc.). In addition, each Gadget can have a set of features, repre-
sented as a GadgetFeature. Features will represent the various nuances of gadgets within
the same type (e.g., a mobile phone can have Bluetooth capabilities, a laptop can have a
built-in web camera, etc.). Each feature can also have one or more parameters associated
with it. These parameters serve as a basic way to record details of the various features,
where applicable (e.g., Bluetooth version 1.2 versus 2.0).

Gadget 0.% 1 GadgetType
name:string i>——— label:string
description:string description:string

0.*
0 GadgetFeature
~—{ label:string
description:string

Figure 4-4. Object model for conversational Gadget Catalog

Naturally, we'll need to extend our database model to support our new object model,
since all of these details about gadgets will need to be persisted in the catalog database.
Figure 4-5 shows the new schema for our Gadget Catalog database. Gadgets, types,
and features are maintained in the GADGET, GADGET _TYPE, and GADGET_FEATURE tables,
respectively. Types and features are linked to gadgets through association tables
(GADGET_TYPE_ASSN and GADGET FEATURE_ASSN), allowing them to be associated with multiple
gadgets if needed (as specified in our object model).

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

GADGET GADGET_TYPE_ASSN GADGET_TYPE
GADGET_ID LONG GADGET_ID LONG L > TYPE_ID LONG
NAME VARCHAR(50) TYPE_ID LONG LABEL VARCHAR(20)
DESCR VARCHAR(100) DESCR VARCHAR(500)
GADGET_FEATURE_ASSN GADGET_FEATURE
GADGET_ID LONG »| FEATURE_ID LONG
FEATURE_ID LONG LABEL VARCHAR(20)
DESCR VARCHAR(500)

Figure 4-5. Database model for conversational Gadget Catalog

Finally, we come to the user interface. Our web application will need to be extended
as well, to allow administrators to create, edit, and delete all of these model entities. Our
extended pageflow is depicted in Figure 4-6.

Search \
Admin Home Gadget List
Add new gadget |

Edit gadget Add new

+ Edit types type/edit
Save / \ - type \ |:|
|:I N<ooe—" |:I N oore—"]

Edit Gadget Form Edit Gadget Types Edit Gadget Type
Edit features /;\ddt“e"}’
eature,
/edit feature

Done / \ Save /

Edit Gadget Features Edit Gadget Feature

Figure 4-6. Pageflow for the conversational Gadget Catalog

We've reorganized the Ul around a new administrative home page that acts as a
launching point for the various administrative functions. From the home page, adminis-
trators can choose to create a new gadget or search for existing gadgets to be edited. Both
paths lead to an “Edit Gadget” page that is used to both create new gadgets and edit exist-
ing ones. From this page, the administrator can edit the core attributes of a gadget (name

73

74

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

and description, currently), and also invoke other screens for editing gadget types and
features. From these subscreens, the user can create new types and features, and
assign/remove these from the gadget being edited.

Conversation Basics

A conversation is a new context scope introduced by Seam. Before we look at the techni-
cal details behind Seam conversations, let’s examine the practical motivations for
introducing a new context in web applications.

The Motivation for Conversations

If you've developed web applications before, looking at the extended Gadget Catalog
pageflow in the previous section should remind you of some common issues with basic
create/update/delete systems like this. One obvious issue that comes with more compli-
cated pageflow is state management. When the user chooses to edit a gadget (using the
“Edit Gadget Form”), and then moves into editing types and/or features for that gadget
on other pages, we need to remember the gadget that he or she is editing. By itself, that
would be a relatively simple thing to handle using session data, but what about more
problematic or complicated actions the user might perform? As the user moves into the
various branches of the flow, there’s the chance that he or she may want to back up and
start working on something else. The user may start up another tab/window in the
browser and start a new path through the pageflow. How do we deal with these gracefully
and maintain consistent state data for the user?

With just a single session context for each user, we have to juggle the state data
within the session when these events happen. If the user starts a new path through the
flow, we have to either reset the state data (e.g., flush the edits the user has made so far
and start a fresh gadget edit session), or we need to maintain multiple sets of state data
for the user. Neither of these options is very appealing. Flushing the state and starting
over is fairly simple from a development standpoint, but the user may lose valuable work
that he or she actually meant to go back and finish. Maintaining multiple sets of state
data is appealing to the user, but it will get complicated quickly in terms of the applica-
tion code. We'll need to create a way to identify these various sets of state data and
somehow determine which set the user wants to work on at any given point. We may also
have to create additional navigation functions to allow the user to jump between the dif-
ferent sets of state data.

Many readers have probably had to deal with this issue themselves in the past using
standard MVC frameworks like Struts or vanilla JSP/JSE and may have been successful to
various degrees. But these same issues led the Seam framework developers to devise a
better way to deal with more complex user interactions, and their solution became the
conversations that are in Seam today.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Conversations and Other Contexts

As you saw in the earlier section “Seam Component Contexts,” the conversation context
is, in one sense, just a subdivision of the standard session context. In regular Java EE
environments, all web interactions happen within a short-lived event context that falls
within a long-lived session context. And each page that is involved in a given event has its
own even shorter-lived page context. Seam conversations provide another context that
wraps one or more user events within a given session. The key phrase here is “one or
more.” If a conversation could only include a single event, it wouldn't be very useful. But
conversations can span multiple user events. Just as a verbal conversation between two
people consists of one or more exchanges of words, a Seam web conversation consists of
one or more request/response exchanges between a user and a web application. And
since a conversation is like any other context, it can hold state data, and that state data
spans all the events that fall into the conversation.

While a conversation is more than just an event, it’s also less than an entire user ses-
sion, and that makes it useful for other reasons. A user can start and end multiple
conversations during a given session, which provides the capability to group multiple
requests into something like “subsessions.” Seam also supports multiple active conversa-
tions, allowing a user to have simultaneous workspaces. Each conversation can be kept
independent of the others, and since each one has its own set of state data, a Seam appli-
cation can actually remember (and forget) each conversation separately.

Conversation Life Cycle

As you saw in the earlier section “Seam Component Contexts,” Seam manages conversa-
tions (and other contexts) within the overall JSF request processing life cycle. The Seam
phase listener drives the conversation management at each stage in the JSF request life
cycle.

Before the “restore view” phase, Seam performs some basic housekeeping for its
overall context management scheme. After the “restore view” phase completes, Seam
determines whether a conversation context needs to be created or restored, and then ini-
tializes the active conversation. The result of this initialization will be one of two things:

* If the request contains a reference to an existing conversation, and that conversa-
tion hasn’t expired, then that conversation will be restored.

¢ If there’s no conversation to be restored, a new conversation will be created.

There are two concepts that I just mentioned that need to be explained a bit more:
conversation references, or IDs, and conversation expiration.

75

76

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Conversation IDs

First, I mentioned that a request could contain a reference to a conversation. Conversa-
tions can span across multiple web requests, so there needs to be a way to track the
conversation in the stateless world of HTTP requests. This is the same issue faced with
the session context—Java EE web containers need to track the user’s session across
requests. And the solution that Seam uses for sessions is largely the same. Each conversa-
tion is given a conversation ID, and this conversation ID needs to be passed along with
each request so that Seam knows which conversation to initialize after the “restore view”
phase.

Normally, you don’t need to worry about conversation IDs, because Seam handles
them for you when it’s involved in generating links or directing the user to views after an
action completes. But in cases where you are generating nonfaces links in your UI, and
you need to propagate the conversation ID to the target page, you do need to ensure that
the conversation ID is attached to the link. I'll discuss these details in the section “Start-
ing or Ending Conversations on Page Links.”

While conversation IDs are typically generated for you automatically by Seam, you
can specify your own conversation IDs explicitly, if needed. You'll see how this is done
when we look at the various ways of starting conversations. Specifying your own conver-
sation IDs is especially useful when you want the “identity” of a conversation to be tied
to specific state data. If a user is editing his or her profile in one conversation, for exam-
ple, and then asks to edit his or her profile in another conversation, it doesn't make much
sense to have both conversations happening at the same time. It would be much better
to automatically jump the user to the existing profile editing conversation. This can be
accomplished by giving the conversation an ID that’s based on the action being per-
formed (e.g., “editing”) and a unique identifier for the target entity (e.g., the user ID that
owns the profile).

You should also note here that conversation IDs (explicit or otherwise) are only nec-
essary because Seam supports multiple active conversations for each user. If Seam only
supported one conversation at a time, the active conversation reference could simply be
kept in the user’s session, and Seam would just have to check to see whether an active
conversation existed each time a request occurs. But since Seam supports nested conver-
sations, as well as concurrent conversations, for the same user, it needs to know which
conversation each request is running under.

Conversation Expiration

The other important life-cycle concept that I mentioned is that conversations can expire.
Again, just like with sessions, Seam needs to detect when a conversation isn’'t needed any
longer. Sometimes a conversation is ended explicitly, but sometimes a conversation

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

needs to be expired, because we just stop getting requests from the user who owns the
conversation. If this wasn’t done, old conversations would start to pile up within the Java
runtime, eating up precious resources until eventually the application server would
choke.

The expiration time for conversations (i.e., the duration of inactivity that has to occur
before a conversation is expired) is a Seam configuration parameter. It can be set in the
components.xml or in the seam.properties file, both of which I discussed in Chapter 2 when
I described Seam configuration. Seam’s built-in manager component has a property
called “conversationTimeout” that specifies the conversation expiration in milliseconds
(the default value is 10 minutes, or 600,000 ms). To set conversations to expire in 3 min-
utes, for example, you would add the following entry to components.xml:

<components>

<!-- Set the conversation timeout to 3 minutes -->
<component name="org.jboss.seam.core.manager">

<property name="conversationTimeout">180000</property>
</component>

</components>

Implicit vs. Explicit Conversations

AsTjust discussed, Seam ensures that every user event happens inside a conversation
context. If you don'’t tell Seam anything about when to begin and end conversations, each
individual request will be wrapped with its own conversation, and the conversation will
be destroyed when the request ends. These conversations are implicit ones—you didn’t
ask for them to be created, but Seam creates them automatically when the request
occurs, and ends them when the request ends. More specifically, in terms of the JSF life
cycle depicted in Figure 4-3, Seam creates implicit conversations just after the “restore
view” phase, and then removes them after the “render response” phase.

Looking back at our Gadget Catalog pageflow in Figure 4-6, let’s suppose that the
user is on the gadget list page, selects a gadget to edit, and then adds a feature to that
gadget. If we haven’t given Seam any clues about when to begin and end conversations,
Seam will create implicit conversation contexts around each request, as shown in
Figure 4-7. Anything we put into the conversation context during our page processing
will be lost once the page rendering has completed.

77

78

CHAPTER 4 © CONTEXTS AND CONVERSATIONS

Implicit Conversations

- N
_- ’ ~.
~
- ! ~
-, 1 ~

’ 1 ~
/' ! \\
,
A Application A
y Session <
Conversation : Conversation Conversation
Request Request Request
} Edit : ! Edit :
_— | gadget : :features:
f— . . 7 1 b >
Gadget List i EditGadget Form | : i Edit Gadget Features

Figure 4-7. Implicit conversations

In some cases, this might be sufficient, but you’re not really using the power of
Seam conversations unless you explicitly define the boundaries of the conversations.
Explicit conversations can span multiple page requests, allowing conversation state to
be carried across requests. Explicit conversations also allow you to keep multiple conver-
sations active at the same time, supporting the workspace features in Seam.

Explicit conversations are defined by specific begin and end events. In the next sec-
tion, we'll examine the various ways that you can specify these begin and end events.

Starting and Ending Conversations

You can start and end explicit conversations in two ways: when you execute an action lis-
tener method, and when you follow a link to a page. It's much easier, and therefore more
common, to annotate action listener methods to control conversations, so we'll start
there.

@Begin and @End on Action Listener Methods

Any action listener method can be marked with the Seam @Begin or @End annotations to
indicate that they should begin or end the current conversation. If an action listener
method is marked with @Begin, Seam will attempt to start an explicit conversation when
the method completes successfully (i.e., if it does not generate an exception, and if it
returns a nonnull result). New explicit conversations can only be started outside of any
other explicit conversation. Since an @Begin annotation is handled when the action lis-
tener method is invoked by Seam, and since action listener methods are invoked during
the JSF request life cycle (during the “invoke application” phase, to be precise), there will

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

be either an implicit or explicit conversation active. If the conversation is implicit, Seam
promotes it to an explicit, long-lived conversation, and all is well. If there is an explicit
conversation already active, Seam raises an exception, unless the @egin annotation
includes either the join or nest options discussed in the later sections.

You can also specify explicit conversation IDs in the @egin annotation, using the id
attribute. The id can be a literal value, like “editGadget”, or it can use component refer-
ences to base the conversation ID on state data, like “edit-#{gadget.name}”.

To demonstrate the use of the @egin annotation, let’s look again at our extended
Gadget Catalog. The pageflow in Figure 4-6 has a branch that’s used for editing a chosen
gadget, starting with the “Edit Gadget Form” page. There are several pages that the user
could visit while editing a gadget—one or more types or features could be assigned to the
gadget, and new types or features could be created on the fly. As the user bounces
between these pages, we need to keep track of the gadget being edited. We could do this
by inserting the gadget into the user’s session, and then plucking it out again once the
user is done. But then we'll face all the limitations discussed earlier—the user can only
edit one gadget at a time, or we have the difficult task of juggling multiple gadgets at the
same time for the user. Seam’s conversations are the perfect solution. What we want to do
is start a conversation when the user chooses to create or edit a gadget, and then end the
conversation when that user is finished.

The path to create a new gadget, leading from the “Admin Home” page to the “Edit
Gadget Form” page, is handled by the editGadget() action listener method on the
gadgetAdmin component, as you see in the code in the page that generates the “Add a new
gadget” link:

<s:link action="#{gadgetAdmin.editGadget}">
<h:outputText value="[Add a new gadget]"/>
</s:link>

The gadgetAdmin component is an instance of our GadgetAdminBean session bean. We
want to start a new conversation when the user creates a new gadget, so we can simply
annotate the editGadget () method with an @Begin marker:

// Start a (new) conversation when the user selects a gadget to edit
@Begin
public String editGadget() {

return "success";

79

80

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

That’s about all we need to do. When the user clicks the “Add a new gadget” link on
the home page, the editGadget () method will be invoked. This method always returns
anonnull outcome, so when it completes, Seam will create a new explicit conversation
context. We have our pageflow configured in our faces-config.xml so that the
editGadget() action takes us to the editGadget. jsp page:

<faces-config>

<navigation-rule>
<navigation-case>
<from-action>#{gadgetAdmin.editGadget}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/editGadget.seam</to-view-id>
</navigation-case>
</navigation-rule>

</faces-config>

The editGadget. jsp page has been extended to include support for multiple types
and for gadget features, but it’s otherwise similar to the previous version. It references
the gadget component as the backing bean for the form, much as it did before:

<table border="0">

<tr>
<td>Name:</td>
<td>
<h:inputText value="#{gadget.name}"
required="true" />
</td>
</tr>
<tr>
<td>Description:</td>
<td>
<h:inputText value="#{gadget.description}"
required="true" />
</td>
</tr>
</table>

<h:commandButton type="submit" value="Save"
action="#{gadgetAdmin.saveGadget}" />

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

The gadget component is bound to an instance of our Gadget entity EJB using the
@Name annotation in the code, just as we did in earlier versions:

@Entity

@Table(name="GADGET")

@Name("gadget")

public class Gadget implements Serializable {

By default, Seam binds entity bean components to the current conversation context,
which is exactly what we want to happen here. Our editGadget() action listener method
caused an explicit conversation to get started, and when the editGadget page references the
gadget component, it is initialized (since until this point in the pageflow it hasn’t been refer-
enced yet) and placed in the conversation context. In earlier versions of our Gadget
Catalog, the conversation context was implicit and was destroyed after the editGadget page
request was processed. That was fine before, because all we were doing in earlier versions
was setting the gadget’s name, description, and single type value, all in one form submis-
sion. So as long as the gadget component was persisted before the request completed, it
was fine to have the implicit conversation destroyed along with the Gadget backing bean.
But now, we're going to be editing the Gadget across multiple page requests, so we need to
have an explicit conversation scope that extends across these requests, in order to keep our
Gadget active.

We've managed to start our conversation, now we have to worry about when and
how to end it. You'll notice in the snippet from the editGadget page earlier that the form
is backed by the saveGadget () action listener method on our gadgetAdmin bean. That’s the
obvious place to end the conversation, since that’s the point when the user is saying,
“I'm done working on this gadget.” Ending a conversation with action listeners is similar
to beginning them; we simply annotate the listener method in our GadgetAdminBean class
with an @End annotation:

@End

public String saveGadget() {
saveGadget (getActiveGadget());
return "success";

Just like the @Begin annotation, Seam will end the current conversation if the anno-
tated method returns a nonnull value, without generating an exception. That means that
the current conversation is still active while the method is running, allowing you to com-
plete any necessary tasks before the conversation ends. In our case, the saveGadget ()

81

82

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

method does just what you'd expect—it persists the current active Gadget sitting in the
conversation context, by calling the saveGadget (Gadget) utility method on
GadgetAdminBean:

public void saveGadget(Gadget g) {
try {
if (gadgetDatabase.find(Gadget.class, new Long(g.getId())) != null) {
gadgetDatabase.merge(g);

}

else {
gadgetDatabase.persist(g);

}

}
catch (Exception e) {

e.printStackTrace();

Assuming that this is successful, the saveGadget () method returns a “success” value,
and Seam will then destroy the active conversation context, along with the gadget com-
ponent. Our pageflow is set up so that the saveGadget() action takes us back to the home
page, where we can start the whole pageflow over again.

Starting or Ending Conversations on Page Links

Seam also allows you to start and end conversations on page links. By providing Seam-
specific request parameters on your page links, you can instruct the Seam phase listener
to begin and end conversations prior to rendering the requested page.

If you look back at the extended Gadget Catalog pageflow in Figure 4-6, you'll notice
that there are two ways a user can transition into the gadget editing branch. I just covered
one of them (the “Add a new gadget” link on the home page). The other path involves
performing a search against the database, and then clicking an “Edit” link next to one of
the gadgets in the list of results, to edit that gadget.

Before I discuss the conversation-related aspects of the search function, let’s take a
brief detour and run through how we’ve implemented the search function itself in our
extended version of the Gadget Catalog. First, we added a search box to the home page,
allowing users to search for gadgets by matching the input text against the name and
description fields of the gadget. The entire home page is shown in Figure 4-8.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Gadget Catalog
Findgadgets:| | search

Add a new gadget

Figure 4-8. Administrative home page for Gadget Catalog

The code for the home page is pretty simple:

<html>
<body>

<%@ include file="header.jsp" %>

<f:view>

<h:messages/>
<!-- Link to add a new gadget -->
<h:form>
<table border="0">
<tr>
<td class="formLabel">Find gadgets: </td>
<td class="formInput">
<h:inputText value="#{gadgetAdmin.searchField}"/>
</td>
<td><h:commandLink type="submit" value="Search"
action="#{gadgetAdmin.search}"/></td>
</tr>
</table>
</h:form>
<s:1link action="#{gadgetAdmin.editGadget}">
<h:outputText value="[Add a new gadget]"/>
</s:1link>

</f:view>

<%@ include file="footer.jsp" %>

</body>
</html>

Note that I've removed all the CSS style references for the sake of clarity. If you'd like
to see the full version with the CSS styles, check out the code examples for the book.

83

84

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Handling the search itself is pretty simple. If you look at the preceding JSP code, you
see that the text input field in the search form is tied to the searchField property of the
gadgetAdmin component, and the form is handled by the search() action listener method
on this same component. On our GadgetAdminBean class, we defined the searchField prop-
erty to accept the value of the input field, and the search() method is implemented to
perform the appropriate search, using the EntityManager injected into the bean:

private String mSearchField;

public String getSearchField() { return mSearchField; }
public void setSearchField(String sf) { mSearchField = sf; }

public String search() {
String searchField = "%" + getSearchField() + "%";
try {
Query q =
gadgetDatabase.createQuery("select g from Gadget as g " +
"where g.name like :searchField " +
"or g.description like :searchField " +
"order by g.name")
.setParameter("searchField", searchField);
mGadgetMatches = q.getResultlist();
}
catch (Exception e) {
e.printStackTrace();

mSelGadget = null;

return "listGadgets";

Now, how do we actually display the list of matching gadgets? Well, in the preceding
search() method, you'll notice that we're taking the list of Gadget beans returned from the
query and assigning it to our mGadgetMatches member variable. We're also setting the
mSelGadget member variable to null. Why? Well, these member variables have been
annotated with a few other Seam annotations:

@DataModel (value="gadgetMatches")
List<Gadget> mGadgetMatches;

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

@DataModelSelection
private Gadget mSelGadget;

The @DataModel annotation publishes a collection (a Map, List, Set, or an array of
Objects) as a JSF DataModel that can be used with a JSF dataTable UI component. The
annotation causes Seam to wrap the tagged collection with a DataModel and put it into
the scope of the component that owns it, under the name given by the value attribute
(if no value is provided, the name of the member variable is used). You can then reference
the DataModel in a dataTable component in your JSP. In our case, we've configured the
pageflow to take the user to the 1istGadgets. jsp page when the search() action listener
returns, so in that page we display the search results by referencing the “gadgetMatches”
DataModel:

<body>
<f:view>
<h:messages/>
<!-- Show the current gadget catalog -->
<h:dataTable value="#{gadgetMatches}" var="selGadget"
columnClasses="dataCell">
<h:column>
<f:facet name="header">
<h:outputText value="Name" />
</f:facet>
<h:outputText value="#{selGadget.name}" />
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Description" />
</f:facet>
<h:outputText value="#{selGadget.description}" />
</h:column>
<h:column>
¢s:link linkStyle="button" value="Edit"
action="#{gadgetAdmin.pickGadget}" />
</h:column>
</h:dataTable>
</body>

A sample view of the search results page is shown in Figure 4-9.

85

86

CHAPTER 4 © CONTEXTS AND CONVERSATIONS

Gadget Catalog

Name Description

The Palm Treo 750v, running Windows Mobile 5.0

The Lenovo ThinkPad T42

Figure 4-9. Search results page

The other annotation we showed previously was the @DataModelSelection on the
mSelGadget member variable. This annotation will cause Seam to inject the selected
object from the DataModel when a Seam link tag is used in the dataTable. In our case, we've
put an Edit button at the end of each row of the search results, allowing the user to edit
any Gadget found in the search. When the user clicks one of the “Edit” links, the corre-
sponding Gadget for that row of the dataTable will be injected into our mSelGadget data
member, and then the pickGadget() action listener method will be called, as specified in
the s:1ink tag in our listGadgets. jsp page. The pickGadget () method is simple enough:

public String pickGadget() {
setActiveGadget(mSelGadget);
return "editGadget";

Here, we take the selected Gadget that was injected into the mSelGadget member and
set it as the value of our activeGadget property. We've annotated the activeGadget prop-
erty so that it will be outjected as the value of the gadget component that’s used in our
editGadget.jsp page:

@In(value="gadget", create=true)
@0ut(value="gadget", required=false)
private Gadget mActiveGadget;

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Our pageflow is set up in faces-config.xml to take the user to the editGadget. jsp page
when the pickGadget() action listener returns “editGadget”:

<navigation-rule>
<navigation-case>
<from-action>#{gadgetAdmin.pickGadget}</from-action>
<from-outcome>editGadget</from-outcome>
<to-view-id>/editGadget.seam</to-view-id>
</navigation-case>
</navigation-rule>

When pickGadget () returns, the user will be brought to the edit page with the selected
Gadget set as the active target of the edit page.

Finally, after all that preface, we can get back to the conversational aspects of our
search function. For a number of reasons, we want the entire search/edit pageflow to be
enclosed by a conversation context. If the search results (the “gadgetMatches” DataModel
on our GadgetAdminBean) are held in an explicit conversation, we can allow the user to
return to the results after editing a Gadget and pick another Gadget to edit. In addition, we
want the editing segment of the pageflow to be contained in a conversation for the same
reasons discussed earlier, namely, the user can then bounce between pages in the editing
section of the pageflow while the active Gadget remains in place.

We want the explicit conversation to start when we initiate the search from the
home page. There are a number of ways we could do that, but we wanted to see how to
initiate a conversation over a page link, so that’s what we’ll do. Looking back at the code
for the adminHome. jsp page, we see that the “Search” link is implemented using a JSF
commandButton

<h:commandLink type="submit" value="Search" action="#{gadgetAdmin.search}"/>

Seam allows us to control conversation propagation over links like this, using a spe-
cial request parameter called “conversationPropagation”. We begin a new conversation
by setting this parameter to “begin”. In this case, we'd add a JSF param tag to our
commandButton:

<h:commandLink type="submit" value="Search" action="#{gadgetAdmin.search}">
<f:param name="conversationPropagation" value="begin"/>
</h:commandLink>

87

88

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

This has the same general effect as annotating an action listener method with
@Begin. When the user clicks the “Search” link, the Seam phase listener will pick up the
conversationPropagation parameter and begin a new explicit conversation context. Then
the search() action listener method will be invoked, which will populate the DataModel
within the conversation.

It’s important to note that there is an important difference between annotating an
action listener method and using a page link to begin a conversation. When we annotate
an action listener method, the conversation will be started after the method completes
(assuming it returns a nonnull result). When we use the conversationPropagation parame-
ter on a link, the conversation is started when the request is received, before any action
listener is invoked. In our case, the conversation begins before the search() method is
run. If we had annotated the search() method with @egin, the conversation would have
been started after the search was performed, and that would have left the DataModel and
DataModelSelection outside of our new conversation. This definitely isn’t what we want,
so we have to use the link approach to begin the conversation.

There are several other ways to control conversation propagation over links in Seam.
When you use the Seam 1ink tag, you can use the propagation attribute on the tag:

<s:link value="Search" action="#{gadgetAdmin.search}" propagation="begin"/>

You can also specify conversation propagation for all requests to a given page, using
attributes on a page element in the pages.xml configuration file:

<page view-id="/listGadgets.seam" action="#{conversation.begin}">
List all gadgets
</page>

This approach will make more sense when I discuss Seam page actions and pageflow
in Chapter 5, but essentially this entry in pages.xml tells Seam that every request for
listGadgets.jsp should cause a new conversation to begin. The reference to
#{conversation.begin} uses a special built-in component named “conversation” that
provides access to conversation-specific actions.

Of course, in all these cases, we can also “end”, “join”, or “nest” conversations over the
link. We can also specify that no conversation propagation should be done over the link,
using the value “none” for the propagation parameter. This tells Seam to run the request
inside of a new implicit conversation, and outside of any explicit conversation that was
active when the link was chosen.

Joining Conversations

As mentioned earlier, a new explicit conversation can only be started outside of any other
explicit conversation. If you try to start a new top-level conversation inside of another

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

one, an exception will be thrown by Seam. You can, however, choose to join an existing
conversation when an action listener or page is invoked.

The @Begin annotation provides a join parameter that can be used for joining an
existing conversation. If you specify

@Begin(join=true)

on an action listener method, a new explicit conversation will be started if one doesn’t
already exist, and if one does already exist, this request will be subsumed into it and will
have access to all the data stored in the existing conversation context.

It’s important to remember the distinction between implicit and explicit conversa-
tions. If a request is operating within an implicit conversation, a join=true option will
have the same effect as a regular @egin annotation—the implicit conversation will be
promoted to an explicit one. If a request is operating within an explicit conversation
already, the join will cause the request to be run inside the existing conversation.

To see this in action, let’s look back at the search path in the Gadget Catalog pageflow
in Figure 4-6. In the previous section, you saw how the link from the home page to the
search results page was configured to start a new conversation. You also saw how we had
to set up a new action listener to handle the “Edit” links on each gadget in the results list.
The editGadget() action listener method on GadgetAdminBean has an @Begin annotation
already, so if the “Edit” links were handled by that action listener, we'd be trying to start a
new explicit conversation inside the one that was started by the search link, and an error
would be thrown. So we created the new pickGadget () action listener method on our
GadgetAdminBean bean, with no @Begin annotation, and we set up our pageflow in
faces-config.xml so that this action would also bring the user to the editGadgets.seam
page.

The option of joining an existing conversation, however, allows us to remove this
additional action listener method and have both the “Add a new gadget” links and the
“Edit” links use the same editGadget () method as their action listener. All we have to do
is change the @Begin annotation on editGadget() to use the join option, and move the
handling of the selected Gadget into this action listener:

@Begin(join=true)
public String editGadget() {
if (mSelGadget != null) {
setActiveGadget(mSelGadget);
}

return "success";

89

90

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

With these changes, we can use editGadget() as the action listener for the “Edit” links
on the search results screen:

<h:dataTable value="#{gadgetMatches}" var="selGadget">

<h:column>
<s:link linkStyle="button" value="Edit"
action="#{gadgetAdmin.editGadget}" />
</h:column>
</h:dataTable>

Now both the “add new gadget” and “edit gadget” paths in our pageflow are being
handled by the same editGadget() action listener method. When the user clicks an “Add
anew gadget” link on the home page, editGadget() is invoked as before. There is no
selected gadget set, so the logic to set the active gadget is bypassed, and the method
returns successfully. The @Begin annotation causes a new explicit conversation to be
started, because there is only an implicit conversation active at this point.

When the user performs a search from the home page, the conversationPropagation
parameter on the search link causes a new explicit conversation to be created, as before.
When the user clicks an “Edit” link, the selected gadget is injected into the mSelGadget
member, as before, and the editGadget() method is called. In this case, the activeGadget
property is set to the selected gadget, causing the gadget component to be outjected at
the end of the method call. The @egin annotation is checked as well, but since an explicit
conversation is already active, and the join=true option has been used, the conversation
context is left in place, and the gadget edit session is subsumed into the current conver-
sation.

Nesting Conversations

Until now, we've only dealt with a flat conversation model. In all our examples, a conver-
sation is a singular context, with no child conversation contexts, and no concurrent
conversations. This is more than sufficient for most situations. But Seam also supports
both nested conversations, where a conversation contains one or more child conversa-
tions, and concurrent conversations, where multiple conversations are active in a user’s
session. This section will cover nested conversations, and the next section will cover the
broader topic of concurrent conversations, also called workspaces, in the Seam frame-
work.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Nested conversations are begun using the same techniques discussed previously
(namely code annotations or link parameters), but with additional parameter options
that indicate to Seam that the conversation to be started should be nested within any
existing conversation context. A nested conversation behaves just like any other conver-
sation, except that it leaves the parent conversation active, and it also has read access to
the context data stored in its parent conversation.

What is the practical use for nested conversations? Well, just like a conversation is
a well-defined subset of work within an overall user session, a nested conversation is a
well-defined subset of work inside another conversation. You can allocate data specifi-
cally for this piece of work, have it cleaned up when it completes, and (using the
persistence support provided by Seam) define transaction boundaries to coincide with
conversation boundaries, making a conversation (nested or otherwise) into a true trans-
action. I'll discuss the transactional aspect of conversations in more detail in Chapter 5
when I cover structured pageflows in Seam, and then again in Chapter 7 when I discuss
business process management. But even ignoring that (advanced) feature of conversa-
tions, nested conversations provide an even more powerful way to organize the
interactions with users in Seam-enabled web applications.

Getting back to the practical case of our Gadget Catalog application, we can make
good use of nested conversations in the path from the search results screen into the
gadget editing branch. In the last section, we changed the conversation structure so that
an explicit conversation was created when a search is executed, and if the user picks a
gadget to edit from the results list, we ensure that the editing session is performed
within the overall conversation. But, by using the @egin(join=true) annotation on the
editGadget() action listener method, we also ensured that the creation of a new gadget
will establish a new explicit conversation.

Well, if a user searches for a set of gadgets and starts editing one of them by clicking
the Edit button on its row of the table, what’s keeping him or her from using the back but-
ton on the browser to go back to the list and start editing another gadget? If the user does
this, the editGadget() action listener will be called again, and the @egin(join=true) anno-
tation will cause the edit session to occur within the same overall conversation. The
selected gadget will be set to the new gadget, and the user will drop back into the
editGadget.jsp page with the new gadget active. In the current version of the Gadget
Catalog, this isn't a problem, but in the future, we expect the complexity of gadget editing
to increase as we increase the complexity of the model. We may need to have interim
state data held within the conversation while the user manipulates the various aspects
of the gadget. If we just set the active gadget and ignore all this other state data, there’s a
good chance we’ll mix data for two gadgets and end up in an inconsistent state. This is
similar to the kinds of issues commonly seen in non-Seam applications when state data
is stored in a single session context. In this case, the inconsistencies are limited to the
conversation context, but the same issue exists.

91

92 CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

To resolve this, we simply need to make two small changes to the Gadget Catalog
code. First, we change the @Begin annotation on the editGadgets() action listener method
to specify that the editing conversation should be nested, if necessary:

@Begin(nested=true)
public String editGadget() {
if (mSelGadget != null) {
setActiveGadget(mSelGadget);
}

return "success";

The nested=true option on @Begin tells Seam to create a nested conversation if an
explicit conversation has already been started (e.g., when the user edits a gadget from
the search results screen). Otherwise, a new explicit conversation will be started (e.g.,
when the user chooses the “Add a new gadget” link from the home page).

As mentioned earlier, we can also specify the conversation ID for the nested conver-
sation, by setting the id attribute on the @egin annotation. In our case, we might want to
have the conversation ID based on the ID of the gadget:

@Begin(nested=true,)
public String editGadget() {
if (mSelGadget != null) {
setActiveGadget(mSelGadget);
}

return "success";

This way, if the user tries to edit the same gadget twice, he or she will be brought
back into the first conversation that was created, rather than creating a new, redundant,
and potentially confusing one.

We also need to make sure the nested conversation is ended at the right point in the
pageflow. In our case, the user can return to the search results list from the gadget edit page
by choosing the Back to list button at the bottom of the page, as shown in Figure 4-10.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Gadget Catalog

Name: MacBook Pro
Description: | The Apple MacBook Pro

Label Description

Types: Laptop!note porlabla computer|

Add/remc 35
Label Description

Foetures: | [Bustooth |Bietooth comectivy |

Figure 4-10. Gadget editing page

This button is handled by the 1istGadgets() action listener method on the
GadgetAdminBean. We need to annotate this listener with @End to ensure that the nested
conversation is ended:

@End

public String listGadgets() {
setActiveGadget(null);
return "success";

This is fine in terms of keeping the various workstreams separate, but we still haven’t
provided the user with any way to go back and forth between these conversations. If the
user backs up in the browser, picks a new gadget, and starts editing it, the earlier nested
editing conversation will be irrecoverable. It will just get cleaned up when the topmost
explicit conversation is ended.

Seam’s support for workspaces helps to fill this gap, as discussed in the next section.

Workspaces: Managing Concurrent Conversations

Saying that Seam “supports multiple conversations” isn't really accurate. It's more appro-
priate to say that Seam recognizes that a user can create multiple conversations whether

94

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

you (the application developer) like it or not, and the framework gives you a reasonable
way to deal with it. In addition to the “controlled” creation of nested conversations,
described in the previous section, users can also do funny things like open multiple tabs
in their browser and navigate through the application in multiple pageflows at the same
time. Or, simpler still, they can use that perfectly innocent-looking back button on their
browser to backtrack a few steps, and then take a completely different path through the
application.

Seam helps you manage this situation by providing the following features that, in
combination, provide the support for workspaces built into Seam:

» Every view (i.e., page) in your application can be given a stateful description, using
an entry in pages.xml.

* When a view is encountered within an explicit conversation context, it is noted by
the Seam phase listener, by setting the description of the conversation to be the
description of the view pulled from pages . xml.

¢ Seam provides a built-in component named “switcher” that contains a list of the
active conversations that have descriptions assigned to them.

* At any point during an active session in a Seam application, a user can ask to
switch to another conversation by providing its ID.

Put this all together, and you have the means to provide some interesting concurrent
workspace functions for the user.

The first piece of the puzzle is providing what I referred to as stateful descriptions for
key views in your pageflow. That term refers to a description that is composed from key
state data in the conversation. In other words, you can (and should) use information that
uniquely identifies the conversation, from a workspace point of view, to construct the
description of the key views in your pageflow. But, since the user will also be shown these
descriptions, they need to be human-readable and understandable. These descriptions
are specified in the pages.xml configuration file that you first encountered in Chapter 2
when we looked at configuring Seam applications. At that stage, I brushed off pages.xml
as an optional configuration file that I'd describe in more detail later in the book. Well,
we've reached that point now. I provide some cursory details about pages.xml here, and
I'll dive into even more detail in Chapter 5, which covers structured pageflow.

Let’s make this concrete by looking at the Gadget Catalog. There are a few key page
views in our pageflow, and we've already flagged them in a sense by defining our conver-
sation boundaries around them. There’s the search results page (1istGadgets.jsp) and the
gadget editing page (editGadgets.jsp). Given what I just said about providing stateful
descriptions for page views, Listing 4-1 shows what we've put into pages.xml for this
version of the Gadget Catalog.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

Listing 4-1. The pages .xml Configuration File, with View Descriptions

<pages>
<page view-id="/editGadget.seam">Editing gadget: #{gadget.name}</page>
<page view-id="/listGadgets.seam">
All gadgets matching "#{gadgetAdmin.searchField}"
</page>
</pages>

We defined a description for the editGadget. jsp page using the name property of the
current gadget being edited, and the description for the listGadgets.jsp page is based on
the text entered into the search box. Seam supports the use of JSP/JSF EL expressions in
the descriptions of pages in pages.xml, which allows us to include state information in the
descriptions.

As mentioned earlier, when a view is hit by a user during an explicit conversation,
and that view has a description specified in pages.xml, Seam takes the page description,
applies the current conversation state to it, and sets the result as the description of the
current conversation. With this pages.xml file in place, if we do a search for “Apple”, edit
one of the gadgets, and then back up in the browser and do another search for “Palm”,
we'll end up with three conversations with descriptions set on them, as shown in Figure
4-11. An explicit conversation will be started when we hit the “Search” link on the home
page and request 1istGadgets. jsp. The description for this view will be pulled from
pages.xml, and the conversation description will be set to “All gadgets matching Apple’”,
and the Seam workspace switcher component will record the named conversation. When
we choose to edit the gadget named “MacBook Pro”, we start a nested conversation, and
the description for editGadget. jsp is pulled from pages.xml. The nested conversation
description is set to “Editing gadget: MacBook Pro”, and the workspace switcher stores it
in its workspace list. Finally, if we go back in the browser to the home page and search for
“Palm”, another conversation is started, its description is set to “All gadgets matching
‘Palm’”, and the switcher records this conversation in its list as well. Note that the implicit
conversation that was started when we went back to the home page was not recorded by
the workspace switcher. This conversation is not an explicit one, and even if it was, there
is no description provided for it in pages.xml.

95

96 CHAPTER 4

CONTEXTS AND CONVERSATIONS

Application

Session
Seam Workspace
. Switcher
PO -®
-----9
Conversation: <
“All gadgets matching ‘Apple’” \
Conversation: G
“Editing gadget: MacBook Pro” i
Request Request f
Search for Edit \
“Apple” —— gadget '
— > 1
—_— 1
= <BACK> W
1
Gadget List Edit Gadget Form H
\
1
_____________________________________ Conversation: B
; <implicit conversation> e _gadgets /
: matching ‘Palm’” e
] Nooooo
Request : Search Request
: for
: “Palm” N
[—
Admin Home Gadget List

Figure 4-11. Recording workspaces in the Gadget Catalog

Now, if we want to make these workspaces useful to the user, we’ll need to give the
user some way to see them and jump between them. The Seam workspace switcher is

published in each request context under the name “switcher”, so we can access it and use
the stored conversations to generate workspace links for the user.

Note You may have noticed that | depicted the workspace switcher in Figure 4-11 as sitting in the ses-
sion context, when in fact it's a component in the request context. The conversation list that backs the

workspace switcher is in session scope, however, and all the switcher does is convert the list of workspaces
into a select list that can be used in Ul components. But it’s still important to know that the component itself
is in the request scope.

CHAPTER 4 ©° CONTEXTS AND CONVERSATIONS

The switcher component has a property named “selectltems” that contains a list of
JSF SelectItem objects, each of which maps a conversation ID to its description. The
switcher also has an action listener method named select() that implements all the logic
to switch the user’s view to the workspace whose ID matches the value of the switcher’s
conversationIdOrOutcome property. So it’s a simple matter for us to put a select menu into
our home page that allows the user to pick an active workspace to jump to:

<!-- Switch workspaces, if any exist -->
<h:form rendered="#{!empty switcher.selectItems}">
<h:commandButton action="#{switcher.select}" value="Jump to:"/>
<h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">
<f:selectItems value="#{switcher.selectItems}"/>
</h:selectOneMenu>
</h:form>

First, we insert a JSF commandButton that invokes the switcher.select action listener.
Then we insert a JSF selectOneMenu that uses the switcher’s selectItenms list as its set of
choices. The value of the chosen item will be the conversation ID of the workspace,
which will be set to the switcher’s converstionIdOrOutcome property.

If we put the preceding menu into our home page, and then follow the page
sequence depicted in Figure 4-6 the result will be the workspace choices shown in
Figure 4-12.

Gadget Catalog

Al gadgets matching "Palm” : +|

All gadgets matching "Palm"
| All gadgets matching "Apple"
) Editing gadget: MacBook Pro

Add a new gadget

Figure 4-12. The workspace switcher in action

97

CHAPTER 4 © CONTEXTS AND CONVERSATIONS

When a workspace is chosen, the switcher will switch the current conversation con-
text to the chosen one, and then take the user to the view that generated the description
of the workspace. So in our case, if we pick the “All gadgets matching ‘Apple’” workspace,
that conversation context, including the GadgetAdminBean instance containing the results
of the search in its gadgetMatches property, will be restored. Then we'll be taken to the
listGadgets.jsp page, which will display the results for us again, as you see in Figure 4-13.

Gadget Catalog

Name Description Type(s)

Apple iPod Nano|The 4 or 8GB iPod Nano||No types assigned

The Apple MacBook Pro||No types assigned

Figure 4-13. Returning to an in-process conversation

Summary

This chapter has introduced you to the concept of conversations, a powerful feature pro-
vided by the Seam component model. More than just another web context, more than
just a subset of the session context, conversations provide an effective way to parcel user
activity into discrete interaction scenarios.

All web requests in a Seam application are handled within a conversation context,
but conversations are only made explicit and long-lived when you tell Seam where to
begin and end them. You saw two general ways to set conversation boundaries: using
@Begin and @End annotations on action listener methods, and using request parameters
on page links. You also saw how options on the conversation boundaries can cause
requests to be optionally merged into existing conversations (called “joining” the active
conversation), or you can define nested conversations that live within the duration of
their parent conversations, and can read (but not write) the context data in their parents.

Finally, you saw how Seam leverages the conversation model to provide user work-
spaces, allowing a user to switch dynamically between independent, concurrent
activities.

I'll expand on the concepts I introduced in this chapter in Chapter 5, when I discuss
Seam’s support for structured pageflow and jPDL, and also in Chapter 7, where I'll dis-
cuss business process modeling and transactional conversations.

CHAPTER 5

Structured Pageflow

In earlier chapters, we explored the core features of the Seam framework, namely its
component model (bridging JSF and EJB, among other things) and its extended set of
runtime contexts/scopes (providing the concept of conversations, among other things).
In this chapter, we begin to look at the ancillary features of the framework. I label these
as “ancillary” not to downplay their importance or practical value. Quite the contrary,
they are eminently useful. I call them “ancillary” because it is not likely that you will
choose to adopt Seam simply to use these features. Under normal circumstances, you'll
adopt the core Seam features (Seam components and conversations), and then pick and
choose from among the ancillary features (pageflow, business process modeling, AJAX
support) to suit your needs.

This chapter is focused on Seam’s support for managing application pageflow using
the jBPM Process Definition Language (jPDL). As the name implies, jPDL is part of jJBPM
(Java Business Process Management), which is the JBoss tool for defining workflows and
orchestrating tasks within a business process. Roughly speaking, jPDL plays the same
role as the Business Process Execution Language (BPEL)! standard. Both are XML lan-
guages for defining process/task flows within a larger BPM environment.

The jBPM support found within Seam can be used in two general ways. Within the
scope of a single user session (actually, within the scope of specific conversations) in a
web application, jPDL can be used to specify the valid pageflows that a user can take in
the user interface. This limited application of jJBPM provides a form of pageflow configu-
ration that is richer and more expressive than the standard JSF navigation rules found in
faces-config.xml.

This in itself can be very useful for managing the view layer of your web application,
but jBPM is capable of doing much more. If you generalize the concept of flow between
pages to flow between general-purpose tasks, and consider that these tasks could be
implemented as web services, web pages, rules in a rules engine, business objects, or
whatever, you've made the progression from pageflow to workflow. If you further expand

1. At the time of this writing, JBoss has released a beta version of jBPM that includes support for BPEL as
an alternative to its custom jPDL syntax. You can expect to find this support make its way into a future
release of Seam.

99

100

CHAPTER 5 ©° STRUCTURED PAGEFLOW

the concept to allow for long-lived workflows, involving multiple users acting across mul-
tiple user sessions, you've entered the realm of business process management. This is the
broader realm of jBPM.

This chapter focuses on the more limited (but still very useful) application of jBPM to
manage pageflow (i.e., the use of jPDL to define the navigation of a single user between
pages within a single conversation). To do this, I first discuss the basics of jPDL itself,
and how it is integrated and extended by the Seam framework. Then we'll return to our
Gadget Catalog so you can see how pageflow can be used to define more structured user
scenarios in the application.

In Chapter 7, I'll discuss the broader applications of jBPM for full-blown business
process management within Seam.

The Basics of Pageflow with jPDL

Before diving into the details of Seam’s pageflow support and its practical use in the
Gadget Catalog application, you need to understand the concepts behind jBPM’s
pageflow definition language, jPDL.

The Language of jPDL

Description languages, typically based on XML, are at the heart of most current workflow
environments, whether they are simple pageflow schemes or full BPM frameworks.
You've already become very familiar with a simple pageflow description language—the
navigation rules found in the JSF faces-config.xml file. And in these navigation rules, you
also saw the basic components of these flow description languages, just geared specifi-
cally for pageflow rather than more general process flow. Here’s a sample set of JSF page
navigation rules for a hypothetical user interface used for editing users in an application:

<navigation-rule>

<from-view-id>/users/addUser.jsp</from-view-id>

<navigation-case>
<from-action>#{userAdmin.saveUser}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/users/userHome.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-action>#{userAdmin.editRoles}</from-action>
<to-view-id>/users/editUserRoles.jsp</to-view-id>

</navigation-case>

CHAPTER 5 "' STRUCTURED PAGEFLOW

</navigation-rule>
<navigation-rule>
<from-view-id>/users/editUserRoles.jsp</from-view-id>
<navigation-case>
<from-action>#{userAdmin.addRole}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/users/addUser.jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

This pageflow is represented graphically in Figure 5-1.

Save or

cancel N\ Edit roles
Add new

| — >
user
\ Done /

User Home Add user Edit user roles

Figure 5-1. New user pageflow

This section of the faces-config.xml defines the pageflow used to add a new user, add
roles for that user, save the user’s information, and return to a home page. The flow starts
when the user lands on the /users/addUser.jsp page. From this view, the user can either
save the user information (by invoking the userAdmin.saveUser() action listener method)
or jump to the /users/editUserRoles. jsp page. From the editUserRoles.jsp page, if the
user invokes the userAdmin.addRole() action listener with a “success” outcome, he or she
is brought back to the addUser. jsp page.

You can see here the same basic concepts that are used in other flow description lan-
guages, namely:

* States: The flow progresses from one state to another. States are represented here
as JSF views, implemented by specific pages.

* Events and outcomes: Various activities can occur during the course of the flow.
These activities can have different outcomes: success or failure is a common
choice, but others can be defined to suit the context. In the case of JSE events
are JSF action methods, and outcomes are the return values from those action
methods.

101

102

CHAPTER 5 ©° STRUCTURED PAGEFLOW

* Transitions: Events and their outcomes, combined with starting states, can be used
to define transitions to other states. If the flow is in state A and event E occurs with
outcome X, take the flow to state B. Or, in the case of JSE if the user is on view A
and action listener E is invoked with return value X, take the user to view B.

These same concepts are present in jPDL, but under different terms, using a different
syntax, and with more options. And since jPDL is meant to be a full business processing
modeling language, it supports these concepts in a much more general way than what'’s
needed for simple pageflow.

I won't go through a full primer on jPDL syntax here, but let’s look at a simple page-
flow example to demonstrate. The jPDL configuration in Listing 5-1 is roughly equivalent
to the JSF navigation rules you saw previously, and this pageflow is also represented in
Figure 5-1.

Listing 5-1. Example jPDL Pageflow Definition

<pageflow-definition name="new-user">
<start-page name="add-user" view-id="/users/addUser.jsp">
<transition name="save" to="home">
<action expression="#{userAdmin.saveUser}"/>
</transition>
<transition name="editRoles" to="edit-roles"/>
<redirect/>
</start-page>
<page name="edit-roles" view-id="/users/editUserRoles.jsp">
<transition name="success" to="add-user"/>
<redirect/>
</page>
<page name="home" view-id="/users/userHome.jsp">
<end-conversation/>
<redirect/>
</page>
</pageflow-definition>

This configuration describes a pageflow that begins on an “add-user” page, with two
possible transitions—to a “home” page or to an “edit-roles” page. From the “edit-roles”
page, there is only one possible transition, back to the “add-user” page. When the user
transitions to the “home” page, the flow ends (as indicated by the end-conversation ele-
ment). Notice that each state in the flow is bound to a physical page/view in the web
application, using view-1id attributes. But state transitions always reference logical state
names, not physical pages, because the same physical page can be used to implement
multiple logical flow states.

CHAPTER 5 "' STRUCTURED PAGEFLOW

Again, you see all the elements of general pageflow here. Flow states are represented
using page and start-page elements (there’s also the option to use a start-state element,
as you'll see in the section “Initiating Pageflows.” Events are specified as optional action
elements of the definition of state transitions, and they are bound to JSF action listeners
using their expression attributes. Transitions themselves are defined using transition ele-
ments, whose name attributes reference the outcomes of action listeners.

Practical Tip When they integrated jBPM into their framework, the Seam developers took some liber-
ties with the jPDL XML schema, ostensibly to make it seem more “page-like” and less “process-driven”
(the “P” in jPDL stands for “process,” not “page”), but also to provide a way to explicitly specify JSF views
within process nodes (something standard jPDL does not support). By inserting their own parsers and node
classes into the jBPM configuration, they added the root pageflow-definition element (in addition to the
standard jPDL process-definition root element), and also added the page and start-page elements
(to extend the standard elements such as start-state, state, node, etc. in jPDL). This can cause some
confusion if you attempt to reference the jPDL XML schema provided with jBPM, and then use these page-
related elements as specified in the Seam documentation. Your jPDL documents will not validate correctly
against the standard jPDL schema, because in effect, Seam is not using the standard jPDL schema. Instead,
if you want to use these pageflow-specific elements introduced by Seam, you must remove the jPDL schema
reference from your jPDL XML file, which eliminates the validation features of XML editors. Hopefully in the
future JBoss Seam and JBoss jBPM will converge on a common jPDL schema, or simply jump entirely to the
industry standard BPEL schema for process definitions. In either case, they would need to map general BPM
concepts into the pageflow context through some other means.

Besides the more expressive nature of jPDL pageflow definitions (which you'll see in
more detail as this chapter unfolds), jBPM supports a state-oriented pageflow model, as
opposed to the event-oriented nature of JSF navigation rules. I discuss that aspect in
more detail in the section “Seam’s Pageflow Model” later in this chapter.

When to Use jBPM Pageflow

JSF comes with perfectly good page navigation support, as you've seen many times. So
why would you want to use jBPM pageflow rather than JSF navigation rules? The answer
to this lies in the pageflow models each option provides.

First, this choice isn't a complete “either/or” situation. You can mix JSF navigation
and jBPM pageflow in the same Seam application. You'll see more about how the transi-
tion between the two is handled in the section “Making Sense of ‘Pages’ in Seam, jBPM,
and JSE” But understanding the pageflow models of JSF and jBPM will help you decide
whether it makes sense to introduce this additional pageflow scheme to your application.

103

104

CHAPTER 5 ©° STRUCTURED PAGEFLOW

JSF navigation rules use a model centered on the logical outcomes of events. With a
JSF navigation-rule entry, you can say things like, “When action X generates outcome,
take the user to this view.” The state within the overall pageflow is implicit. I might, for
example, take several paths through the pageflow to get to a specific physical page. JSF
sees all of these as ending up in effectively the same state, because the user’s location
within the pageflow can only be represented using view-id attributes. But in reality, the
state of the user in the flow depends on the specific transitions that landed the user there.

When defining pageflow in jPDL, states are defined as logical entities, using named
start-page or page elements in the jPDL configuration. These states are bound to physical
views, to indicate what view should be presented to the user at this stage in the pageflow,
but the state is a separate entity. Different transitions can lead to different states, and
these states can have their own transitions, and can be bound to the same or different
physical views, as needed.

There are pros and cons with both types of pageflow. As you'll see in the rest of this
chapter, jPDL is more expressive, allowing you to define everything about the pageflow
within the XML configuration. This can simplify both the JSP pages and the backing
beans in your application, and provides a cleaner separation of pageflow rules and appli-
cation/view logic. But jPDL pageflows are more restrictive in terms of controlling the
user’s “motion” in the application. Once the user enters a state in the flow, he or she can
only transition from that state using one of the transitions specified in the jPDL configu-
ration. If the user tries to go back in his or her browser, the jBPM handler in Seam detects
this and (by default) brings the user back to his or her current state in the pageflow.

Although it’s possible to bypass this restriction on using the back button (see the sec-
tion “Managing the Back Button” later in this chapter), jBPM’s pageflow model is
generally more restrictive and lends itself best to modal navigation, such as wizards and
other controlled workflow situations.

You can implement a form of stateful pageflow when using JSF page navigation by
carefully defining rules that cover every possible transition path the user might make into
and out of a particular view, and specializing the navigation-case entries to define
implicit states within the pageflow. But if you find the need for a truly modal interaction
with the user in your application, why not make use of a tool that directly supports that?

The upshot of all this is that there are generally two situations when you'll find jBPM
pageflow to be useful:

¢ You need to implement a controlled, modal interaction with the user, as either a
subset of the overall user interface or across the entire interface.

* You prefer the clean separation of pageflow rules out of your component and page
code, and your interface can still work effectively with the more restrictive page-
flow provided by jBPM.

If neither one of these applies in your situation, you probably don’t need jBPM page-
flow, and can live with regular JSF navigation rules.

CHAPTER 5 "' STRUCTURED PAGEFLOW

Gadget Catalog: The “New Gadget” Wizard

We've now spent far too much time in this chapter on purely technical details, without
looking at a practical example (we must always remember the title of this book, no?).

First, let’s review where our Gadget Catalog application stands at this point. In
Chapters 1 and 3, we created the basics of the tool, allowing users to create new gadg-
ets and store them in the database. Chapter 4 introduced the concept of Seam
conversations and used them to implement a number of extensions to both the data
model and the pageflow. In that version, gadgets were assigned one or more types and
features, along with their core properties (a name and description). The user can
search for gadgets with a simple keyword search and can edit the properties of gadgets.
Users can also add new gadget types and features, as needed.

Our Gadget Catalog still has a long way to go before it could be considered “practical”
in a real-world sense, however. There are a number of improvements we could imagine,
but let’s start with the glaring problems first. If you deploy the Gadget Catalog application
from Chapter 4 and actually try to use it, you'll notice pretty quickly that creating new
gadgets is a bit clumsy. If you hit the “Add new gadget” link on the home page, you're pre-
sented with the gadget-editing screen, with everything blank to start. This is probably
what you'd expect. If you're anything like me, you'll probably type something into the
Name and Description fields on the form to start. Then you'll notice the sections for
Types and Features. You'll click one of them to see what the options are and pick a few to
add to your new gadget. Then you'll hit the Set button and return to the main gadget edit
screen. To your dismay, you'll see that your name and description values have been lost.
Why? Because we don't persist the state of the gadget when we make the page transitions
from editing the gadget to editing the gadget’s types or features. We expect the user to
enter the name and description for a new gadget, save it, then find it again and edit it to
add the types and features. Of course, that’s just silly. A user should be able to initialize a
new gadget with whatever details he or she has on hand at the time, within a single con-
versation. Jumping in and out of the edit conversation multiple times to set up a new
gadget just won't do.

There are a number of ways we could solve this interface problem. If we wanted to
maintain a modeless interface for creating gadgets (as well as editing them), we'd want to
ensure that all the page transitions within the gadget editing conversation committed
any data entry to the current Gadget object. But suppose that, to start, we wanted to take
the easy route and create a “new gadget” wizard. This wizard will step the user through
the stages of creating a new gadget, asking for specific pieces of information along the
way, and incrementally store the results in the active Gadget object. Then, at the end of
the wizard, we will save the Gadget to the database.

We'll use the implementation of this wizard as the backdrop for our discussion of
using jPDL pageflows in Seam in this chapter.

105

106

CHAPTER 5 ©° STRUCTURED PAGEFLOW

Seam’s Pageflow Model

Seam uses jBPM to implement its pageflow capabilities, but these capabilities have been
tightly integrated into Seam’s overall framework. To accomplish this, the Seam developers
extended jBPM to provide direct support for web page views as the target of flow transi-
tions (e.g., they created a flavor of jBPM where flow events are triggered by web events,
and “state transition” is equated to “web page transition”). I mentioned earlier that Seam
extended the XML syntax of jPDL files to allow you to directly bind JSF views to flow
states. They also extended the concept of actions in pageflows, allowing you to link
actions directly to action methods on any Seam component using JSF’s expression lan-
guage syntax. We saw an example of this in Listing 5-1. The start page includes a
transition named “save”, and the action defined for this transaction is linked directly to
the addUser () method on the userAdmin component.

The Seam developers also integrated jBPM flow control into the Seam conversation
model. The boundaries of a pageflow are always defined by the boundaries of a conversa-
tion—you optionally start a pageflow when you start a conversation, and that pageflow
will end when the conversation ends. The reverse is also true: when you end a pageflow,
you also end the surrounding conversation.

Linking pageflow with Seam’s conversation model like this provides a few advan-
tages. Aligning pageflows with conversations also aligns them nicely with workspaces,
allowing a user to have multiple pageflows active at a given time, each within a conversa-
tion that can be swapped in and out using the workspace features discussed in Chapter 4.
The link between a pageflow and a conversation also makes a lot of sense, conceptually.
After all, a pageflow is meant to be a well-defined interaction with the user as a subset of
his or her overall session, which is exactly what a conversation is meant to represent. So
aligning pageflow with a conversation simplifies the handling of context data and avoids
unnecessary complexity in the overall framework.

In a sense, you should really think of Seam’s jBPM pageflow features as an extension
of the conversation model of the framework. In other words, you can choose to use jBPM
pageflow within a conversation if you want, by providing a jPDL configuration for the
pageflow, and then referencing that pageflow when you start the conversation.

Configuring jPDL Pageflows

You've already seen what jPDL configuration files look like, but how do we configure our
Seam application to use it? First, you need to enable jBPM support in Seam, by adding an
entry to the Seam components.xml file. An example is shown in Listing 5-2.

CHAPTER 5 " STRUCTURED PAGEFLOW

Listing 5-2. Configuring jBPM in components. xml

<?xml version="1.0" encoding="UTF-8"?>
<components>

<!-- Install jBPM support -->
<component class="org.jboss.seam.core.Jbpm">
<property name="pageflowDefinitions">
<value>newGadget.jpdl.xml</value>
<value>anotherPageFlow.jpdl.xml</value>
</property>
</component>

</components>

This entry ensures that Seam initiates the jJBPM component when your application
starts up, and the pageflowDefinitions property entry specifies one or more jPDL configu-
ration files for the jJBPM component to load.

The Seam jBPM component looks for the jPDL files specified here in two general loca-
tions. First, it tries to find the files as resources loaded through the JSF ExternalContext,
which resolves to the current ServletContext if the application is running in a servlet/JSP
environment, or to the PortletContext if the application is actually running as a portlet. So
in our case, we could place our jPDL files into the root of our web archive along with the
other web files (HTML, JSP, etc.). But this raises security concerns, since users could inad-
vertently gain access to the pageflow XML files, and you probably don't want that.

Alternatively, the Seam jBPM component also searches the application’s class path
by attempting to load the jPDL file as a resource using the application’s class loader. If
you want to use this approach, your jPDL files need to sit either in the root directory of
an EAR or EJB jar file, or in the WEB-INF/classes directory of a web archive. This is the
approach we've taken with the updated version of the Gadget Catalog code, where we
place our jPDL file in the root of the application archive file.

Making Sense of “Pages” in Seam, jBPM, and JSF

By now you have probably noticed that there are several configuration files in Seam that
deal with pages in various ways. Before we go any further, you should be clear about the
relationship among these various page configurations.

First, we have the JSF page navigation rules that Seam inherits from JSE typically
specified in the faces-config.xml file. We've been using these throughout the book for our
Gadget Catalog application. We also have page definitions that are specified in the Seam

107

108

CHAPTER 5 ©° STRUCTURED PAGEFLOW

pages.xml file. I discussed these in the latter half of Chapter 4 when I covered Seam con-
versations and workspaces. Finally, we have jPDL XML files that define the flow states in
jBPM that can be backed by web pages, which is the topic of this chapter.

The fact that there are exactly three of these configurations available makes perfect
sense, since we're looking at the integration of three pageflow-related technologies: JSE
Seam, and jBPM. And the configurations link together the way you'd expect given the
services each of these technologies provides.

JSF navigation entries provide basic rules about where to go when specific actions
are fired from pages. Some of these JSF transitions can lead you into pageflows defined by
a jBPM jPDL file. While this jPDL pageflow is in effect at runtime, Seam takes its flow cues
from jBPM, based on the rules defined in your jPDL. If there is any overlap (e.g., if a given
page/action/outcome combination is referenced in both the jPDL file and in the JSF
faces-config.xml file), the jPDL rules take precedence if the user is operating within a
conversation where the pageflow is still active. If the user arrives at this same page out-
side of the pageflow defined in the jPDL file, the JSF navigation rules will be used to
control the navigation.

On top of all this flow management, Seam’s pages . xml file allows you to make use of
Seam’s page-related services, such as conversation-based workspaces (discussed in
Chapter 4), and page actions, which are action listeners that can be fired whenever a
given page is accessed. As discussed in Chapter 4, you'll define various points in your
application where conversations will begin and end. If you decide to use jBPM pageflow
in your Seam application, some of these conversations will have their pageflow con-
trolled by jPDL-defined rules. If you decide to make use of Seam’s extended page-related
services, you can also define some of these conversations to be named workspaces
and/or add actions to pages, whether they fall within jBPM pageflows or not.

Initiating Pageflows

In general terms, starting a pageflow in Seam involves telling Seam, during the process-

ing of a user request, that a particular named pageflow should be started. Seam will then

look for the named pageflow by checking the name attributes on the pageflow-definition

elements in all jPDL files that it loaded up at startup. If it finds the named pageflow,

it checks the starting point defined in the pageflow, and based on that and how the

pageflow was started, it decides where to put the user as the first view in the pageflow.
The starting point of the pageflow is specified in the jPDL file using either a

start-state or start-page element. You saw an example of a start-page element in

Listing 5-1. A start-state element is similar, except that it isn’t tied to a specific view

ID using a view-id attribute:

CHAPTER 5 "' STRUCTURED PAGEFLOW

<pageflow-definition name="checkout">
<!--
<start-state name="start">
<transition name="one-click" to="step1a"/>
<transition name="classic" to="step1b"/>
</start-state>

</pageflow-definition>

What'’s the difference? Put simply, you define the entry point for your pageflow using
a start-page element if the flow will always start from a predetermined page. If the start-
ing point for the pageflow needs to be determined using the outcome of an action
method, you use a start-state element. So in the preceding example, we're saying that
the “checkout” pageflow should start on the node named “stepla”, if the action method
that kicked off the pageflow returns a result of “one-click”. But if the action method
returns “classic”, the pageflow should start on node “step1b”.

This tells us what happens when users come into a pageflow, but how do we move a
user into the pageflow in the first place? How do we arrange for an action method to kick
off the start-state of the pageflow, or for a page link to fire the start-page? I mentioned
earlier that jBPM pageflows are aligned with Seam conversations. So it makes sense that
a pageflow can be (optionally) started whenever a conversation is started. In Chapter 4,
you saw how conversations are begun in two fundamental ways. You either use an @Begin?
annotation on an action method or arrange for a page link itself to start a conversation
(using either attributes on the page link in the JSF view or attributes in a page element in
Seam’s pages.xml configuration file). These same approaches can be used to trigger a
named pageflow.

Starting Pageflows with Annotations

When using @Begin (or related) annotations to enter a pageflow, you specify a pageflow
attribute on the annotation. The value of the attribute must reference the name of a
pageflow defined in a jPDL file deployed with your application. In the Gadget Catalog, as
mentioned earlier, we want to change the “Add a new gadget” link on the home page to
take the user into the “new gadget” wizard. In the previous version of the application,
that link invoked the editGadget () action on our GadgetAdminBean, the same action we use
for editing existing gadgets. But now we want this link to take the user to a pageflow, and
we want to use the @egin annotation to specify this. To make this happen, we'll need to
define a new action method so that we can annotate it independently of the editGadget()

2. You can also start pageflows using the @BeginTask and @StartTask method annotations. These are
used to resume/start a task when using jBPM for more general jBPM process management. You'll see
these in action in Chapter 7.

109

110

CHAPTER 5 ©° STRUCTURED PAGEFLOW

method. We want regular gadget editing to continue using the free-form navigation style
implemented earlier, and only new gadgets will be created through the “new gadget”
wizard.

To make this all happen, we first need to adjust the “Add a new gadget” link in the
home page to use the new action method:

<s:link action="#{gadgetAdmin.newGadget}" value="Add new gadget"/>

Then we define a newGadget () action method on our GadgetAdminBean and use the
pageflow attribute on an @Begin annotation to take the user into our named pageflow:

@Begin(pageflow="new-gadget")

public String newGadget() {
setActiveGadget(null);
return "start";

}

When this action method is triggered during a JSF request, Seam picks up the @Begin
annotation and looks for the pageflow named “new-gadget”. So our jPDL configuration
has to have a matching name attribute on the root pageflow-definition element:

<pageflow-definition name="new-gadget">

</pageflow-definition>

And of course, we have to ensure that our jPDL file is deployed properly in our
Seam application, as described in the section “Configuring jPDL Pageflows” earlier.

We're using an action method to start our pageflow, so the jPDL has to use a
start-state element as the entry point for the pageflow, as just discussed at the start
of this section. If the action method completes successfully, Seam will start an explicit
conversation (as specified by the @egin annotation itself). Then Seam takes the return
value of the action method and checks the start-state node in the jPDL file to determine
where to take the user next. In our case, we've defined the start-state for our “new
gadget” wizard as follows:

<pageflow-definition name="new-gadget">
<!--
<start-state name="entry">
<transition name="start" to="core-data"/>
</start-state>

</pageflow-definition>

CHAPTER 5 " STRUCTURED PAGEFLOW

The start-state element has a single transition defined. It says that a result of “start”,
coming from the action method that landed the user here, should cause that user to tran-
sition to the node named “core-data” in the pageflow. From there, further transitions will
determine how the user makes his or her way through the rest of the pageflow. I'll talk
more about page transitions in the next section.

Now, @Begin annotations can be used with other types of methods on Seam compo-
nents as well, like @Create and @Factory methods. In these cases, the next page has already
been determined, because these methods are run during the RENDER_RESPONSE phase of
the JSF request cycle. So if you use an @Begin(pageflow="...") annotation (or @BeginTask
or @StartTask) on one of these methods, the target pageflow has to start with a start-page
element that specifies the same page. In our case, suppose the first page in our “new
gadget” wizard is /wizard/start. jsp (itis, actually, but you haven't actually seen it yet at
this point, so you'll just have to assume I'm telling the truth). If we wanted to start our
conversation and pageflow on an @Create or @Factory method for some reason, our jPDL
pageflow has to use a start-page entry point, referencing the first) page in the wizard:

<pageflow-definition name="new-gadget">
<start-page name="entry" view-id="/wizard/start.jsp">
</start-state>

</pageflow-definition>

The disadvantage here is that, as mentioned previously, @Create and @Factory meth-
ods aren't called until the target page has been determined already. In fact, the target
page is what causes the @Create or @Factory method to be invoked in the first place. So
somehow we have to navigate the user to the target page (using JSF navigation rules, or
using an explicit view ID as the return value of an action method) to trigger the method
that will start the pageflow. This usually isn't as clean as using an action method, because
you're mixing two navigation models (JSF rules and jPDL) pageflow) in the same request.
But this option is still there if you need it.

Starting Pageflows with Page Links

In Chapter 4, you saw that conversations could be started using page links, and that there
were a few ways to make this happen: using attributes directly on JSF controls in the
page, or using parameters on a page element in the Seam pages . xml file.

If you are using one of the Seam JSF controls, like <s:1ink> or <s:button>, you can use
the pageflow attribute on these to name the pageflow to be started when the link is tra-
versed. In our case, we could adjust our <s:1ink> control in the home page to specify the
pageflow to start:

111

112

CHAPTER 5 ©° STRUCTURED PAGEFLOW

<s:1link action="#{gadgetAdmin.newGadget}"
propagation="begin" pageflow="new-gadget"
value="Add a new gadget"/>

Note that we need to also specify the start of a conversation, using the propagation
attribute. A pageflow has to line up with the boundaries of a conversation, so we can’t
enter a pageflow without starting a new conversation. Now that we're beginning the con-
versation and pageflow using 1ink attributes, we have to remove the @egin annotation
from the newGadget () action method. If we don't, we're telling Seam to start two explicit
conversations on the same request, and an error will occur.

We can also start a pageflow using a standard JSF <h:commandLink> control. As you saw
in Chapter 4, Seam supports a special link parameter called “conversationPropagation”
for controlling conversation boundaries using standard page links. As you saw in that
chapter, we'd use a value of “begin” on this parameter to start a conversation. You can
also use this parameter to specify a pageflow to start with the conversation, using the
syntax begin.<pageflow-name> for the value of the parameter. So, in our case, we could
replace our Seam <s:1ink> with a JSF <h:commandLink> like so:

<h:commandLink action="#{gadgetAdmin.newGadget}">
<f:param name="conversationPropagation" value="begin.new-gadget"/>
<h:outputText value="Add a new gadget (commandLink)"/>
</h:commandLink>

The other way to kick off a pageflow across a page link is to use a page element in the
Seam pages.xml configuration file. As discussed in Chapter 2, the pages.xml file is placed
in the WEB-INF directory of the web archive for our application, and it’s used to configure
workspaces and page actions in Seam applications. In Chapter 4, you saw how we could
also begin and end conversations whenever a referenced page is reached by the user by
using a page action that references the built-in conversation component in Seam:

<page view-id="/somePage.jsp" action="#{conversation.begin}"/>

An alternative way to accomplish the same thing is to use a <begin-conversation>
child element on the page:

<page view-id="/somePage.jsp">
<begin-conversation/>
</page>

If you use this approach, you can also instruct Seam to start a named pageflow on
this page:

<page view-id="/somePage.jsp">
<begin-conversation pageflow="some-pageflow"/>

CHAPTER 5 "' STRUCTURED PAGEFLOW

</page>
For our Gadget Catalog, we would add the following entry to our pages.xml:

<page view-id="/wizard/start.jsp">
<begin-conversation pageflow="new-gadget"/>
</page>

Why would we use this approach rather than using the links to the page? An entry in
the pages.xml file is more efficient and easier to manage, in the situation where you know
that you want to start a pageflow every time a specific page is hit by the user. Otherwise,
you'd have to make sure every link in the user interface that leads to that page is marked
up with the necessary attributes.

What about using start-page vs. start-state when initiating pageflows over links?
The rules that I discussed earlier with method annotations also apply here. Namely,
if the target page is already determined when the pageflow is started, you should use a
start-page in your jPDL file; otherwise, you should use a start-state. In our first link
example, we used an action method on our link:

<s:link action="#{gadgetAdmin.newGadget}"
propagation="begin" pageflow="new-gadget"
value="Add a new gadget"/>

No target view is specified here: the action method will be invoked and then the next
page in the navigation will be determined based on the outcome. So we need to use a
start-state element in our jPDL definition of the “new-gadget” pageflow, and the
transitions there will determine the starting view for the pageflow.

With page entries in the pages.xml file, on the other hand, the target page has already
been determined and used to look up the corresponding page entry. The target page may
have been specified using a view-id attribute on a link control, for example. In this case,
the jPDL for the pageflow needs to use a start-page to start the flow.

Defining Page Nodes and Transitions

Typically, the trickiest part of jPDL pageflow in Seam is setting up the start of the page-
flow. Once the user is in the pageflow, the contents of the jPDL file are used to specify the
states and transitions of the flow the user will take. Pageflow states are specified using
page elements, and transitions between states are specified using transition child ele-
ments on these page elements.

To demonstrate, let’s implement the “new gadget” wizard discussed earlier. The pro-
posed pageflow for our wizard is shown in Figure 5-2. The user starts the wizard from the
administrative home page when he or she clicks the “Add a new gadget” link. In the first

113

114 CHAPTER 5 I STRUCTURED PAGEFLOW

step of the wizard, we’ll ask the user to enter the core data fields for the gadget, which at
this point in the evolution of the Gadget Catalog just includes the name and description
fields. The next step asks the user to pick the relevant types for this gadget, and the step
after that asks the user to choose the relevant features. In both cases, we'll give the user
the option to define a new type or feature, if needed. Finally, the user will be asked to
confirm the entire gadget entry with a confirmation page. Any time along the way, the
user can back up using “previous” links in the wizard.

Page flow
b%gins Define Define
. new type new feature
NPT Neﬂ gave or Nef Eave or
4 cancel cance
/! N\ K \K

! Next Next Next

Add new d ~ - ~ - ~
% gadget
Cancel / K Prev ~ A Prev - A Prev e
Admin Home .’ Input core Specify Specify Confirm

types features new gadget

SaVe or cancel ‘_/

Page flow
ends

Figure 5-2. “New gadget” wizard pageflow

The complete jPDL definition of our “new gadget” wizard pageflow is shown in
Listing 5-3.

Listing 5-3. Complete jPDL for the “New Gadget” Wizard

<pageflow-definition name="new-gadget">
<start-state name="entry">
<transition name="start" to="core-data"/>
</start-state>
<page name="core-data" view-id="/wizard/start.jsp">
<redirect/>
<transition name="next" to="types">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="cancel" to="end">

CHAPTER 5 © STRUCTURED PAGEFLOW

<action name="cancel" expression="#{gadgetAdmin.cancelGadget}"/>
</transition>
</page>
<page name="types" view-id="/wizard/types.jsp">
<redirect/>
<transition name="next" to="features">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="prev" to="core-data"/>
<transition name="new" to="new-type"/>

</page>
<page name="new-type" view-id="/wizard/newType.jsp">
<redirect/>

<transition name="save" to="types">
<action name="save-type"
expression="#{gadgetAdmin.saveGadgetType}"/>

</transition>
<transition name="cancel" to="types"/>

</page>

<page name="features" view-id="/wizard/features.jsp">
<redirect/>

<transition name="next" to="confirm">
<action expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="prev" to="types"/>
<transition name="new" to="new-feature"/>

</page>
<page name="new-feature" view-id="/wizard/newFeature.jsp">
<redirect/>

<transition name="save" to="features">
<action name="save-feature"
expression="#{gadgetAdmin.saveGadgetFeature}"/>

</transition>
<transition name="cancel" to="features"/>
</page>
<page name="confirm" view-id="/wizard/confirm.jsp">
<redirect/>

<transition name="save" to="end">
<action name="save" expression="#{gadgetAdmin.saveGadget}"/>
</transition>
<transition name="cancel" to="end">
<action name="cancel" expression="#{gadgetAdmin.cancelGadget}"/>
</transition>
</page>

115

116

CHAPTER 5 ©° STRUCTURED PAGEFLOW

<page name="end" view-id="/adminHome.jsp">
<redirect/>
<end-conversation/>
</page>
</pageflow-definition>

Among all the options discussed in the previous section about initiating the page-
flow, we decided in the end to use an @Begin annotation on our newGadget () action
method, and reference this action from an <s:1ink> control in the home page. So in our
jPDL in Listing 5-3, we start the flow with a start-state element. The start-state hasa
single transition defined; specifying a “start” outcome from the action method should
bring the user to the state named “core-data’.

The “core-data” state is defined in the next page element. It’s tied to the
/wizard/start.jsp page using the view-id attribute. This is what brings the user to the
first page of our wizard when the link on the home page is clicked. The “start” outcome
from the newGadget () action method triggers the transition on the start-state node,
bringing the pageflow to the “core-data” node. The user will be taken to the view for this
node at the end of the request, because this is the state of the pageflow at the end of the
request.

If you refer back to Figure 5-2, where I graphically show the pageflow we want for
the wizard, the “core-data” node corresponds to the “Input core fields” page shown
there. In the figure, I've shown two possible transitions from this state. A “next” trans-
ition should take the user to a page for defining the types for the gadget. A “cancel”
transition should take the user back to the home page and end the pageflow. These two
transitions are defined in our jPDL in the “core-data” node, using transition child ele-
ments. We've named each transition with the name attribute and indicated the destination
node when the transition is followed using the to attribute. The destination node refer-
ences the name attribute for a page element in the pageflow. For the “next” transition, we
specify that the destination node is “types”, and for “cancel”, we specify “end” as the
destination node.

We've also specified action child elements on each of these transitions. These specify
action methods that should be invoked when the transition is followed. In the case of a
“next” transition, we want the interimSaveGadget () action method on our GadgetAdminBean
to be invoked, so we can do any interim persistence that is necessary for the data col-
lected by the wizard. For a “cancel” transition, we want the cancelGadget () method to be
invoked to clean up before the wizard is ended.

Obviously, we need to give the user a way to actually trigger these transitions. When
operating within a jPDL pageflow, the transition names in the configuration can be refer-
enced as the action attributes on page links. So, in the start. jsp page of our wizard, we've
put two JSF commandButton controls at the bottom of the page:

<h:commandButton value="Cancel" action="cancel"/>
<h:commandButton value="Next" action="next"/>

CHAPTER 5 "' STRUCTURED PAGEFLOW

Clicking the Next button will trigger the “next” transition on the “core-data” node,
because that is the state we are in within the pageflow. The interimSaveGadget () method
will be invoked, and then the user will be transitioned to the “types” state and the
page that is associated with it. Similarly, clicking the Cancel button will invoke the
cancelGadget() action and then take the user to the “end” state and its view. The “end”
state actually ends the pageflow, but I'll discuss that in the next section.

Most of the remainder of the pageflow just uses these same concepts to implement
the remainder of the flow depicted in Figure 5-2. Each page in the flow is represented in
the jPDL with a page element whose view-id references the JSP file that implements the
appropriate view for that state. Each transition between the states/pages is specified in
the jPDL using transition elements, and then we add links in the views that reference
these transition names in their action attributes. Any processing we need to do can be
handled by action methods referenced using action elements on the transitions. If no
processing is needed across a transition, we just leave out the action. The “prev” transi-
tions present on most of the pages are a good example. Any interim persistence of gadget
parameters has been done in our interimSaveGadget () action method, so there’s really
nothing we need to do when the user asks to go to the previous stage in the wizard.

Conditional Flow

So far we've only used unconditional transitions in our pageflow. If a user chooses a form
button in the wizard, the transition named in the action attribute of the control is trig-
gered, and the transition is followed, period. But there are situations where we want to
conditionally follow different transitions from a given state, depending on various factors
(input from the user, the state of context and/or persistent data, etc.).

Suppose, for example, that we introduced a new business rule into our Gadget Cata-
log: a gadget can only have features if it has at least one type assigned. This business rule
might be introduced because we want all features to be validated against the gadget’s
types, to make sure that nonsense combinations aren't created (like a mobile phone with
a built-in DVD player). The implications of this on the “new gadget” wizard are that we
should not take the user to the “features” state unless the user has added at least one type
to the gadget while in the “types” state.

jPDL supports conditional flow rules with the decision element. A decision plays
roughly the same role as a state node in the pageflow, but it’s a temporary state, not asso-
ciated with any specific view. If a transition leads to a decision node, the JSF expression
specified on the decision is evaluated, and the result is used to determine which transi-
tion to make.

117

118 CHAPTER 5 I STRUCTURED PAGEFLOW

To implement our new “features require types” business rule in the Gadget Catalog,
we introduce a new decision node, and change the “types” node so that the “next” transi-
tion leads to the decision node rather than directly to the “features” state:

<page name="types" view-id="/wizard/types.jsp">
<redirect/>
<transition name="next" to="check-types">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="prev" to="core-data"/>
<transition name="new" to="new-type"/>
</page>
<decision name="check-types" expression="#{empty gadget.types}">
<transition name="true" to="confirm"/>
<transition name="false" to="features"/>
</decision>

With this adjustment to the jPDL, the pageflow of the “new gadget” wizard will now
follow the path shown in Figure 5-3.

Define Define
new type new feature
/ Eave or / gave or
New cancel New cance
AV'’4] X
Next rev Next
== Add new 7N A TN)
== gadget
I R Cancel / K prev = yes’ A Prev <
Admin Home Input core Specify Specify Confirm
fields types features new gadget

T
Save or cancel

Figure 5-3. Updated “new gadget” pageflow, with decision node

CHAPTER 5 "' STRUCTURED PAGEFLOW

Now, when the user clicks the Next button on the “Specify types” page, he or she is
taken to the “check-types” state, which is a decision node. The expression “#{empty
gadget.types}” is checked, and if it’s true (i.e., there are no types on the gadget), the user is
taken to the final “confirm” state. If the user did pick some types for the gadget (i.e., the
expression is false), he or she is taken to the “features” state to pick some features for the
gadget. Again, no application or page code changes were needed to make this happen,
just some tweaks to the jPDL. However, if we wanted to implement the validation of fea-
tures against types, we would want to adjust the action that’s taken when the user moves
on from the “features” state.

Note that you aren’t limited to Boolean true/false expressions for the decision. You
can also make transitions conditional on action method outcomes. As an alternative
implementation of the condition in our pageflow, we could add a new checkTypes ()
action method to our GadgetAdminBean:

public String checkTypes() {
if (getActiveGadget() != null &%
lgetActiveGadget().getTypes().isEmpty()) {
return "typed";

}
else {

return "no-type";
}

}

Then we could use this action method, and its outcomes, to configure the decision
node:

<decision name="check-types" expression="#{gadgetAdmin.checkTypes}">
<transition name="no-type" to="confirm"/>
<transition name="typed" to="features"/>

</decision>

Managing the Back Button

By default, jBPM pageflow management effectively blocks the use of the browser’s back
button while a pageflow is active. If the user tries to back up, the jJBPM component picks
up the request, looks up the pageflow associated with the conversation of the request,
and checks the user’s current state in that pageflow. Then it brings the user to that state
and its associated view. To the user, the effect is a disabling of the back button. The user
can hit the back button as much as he or she likes, but Seam will keep putting the user
on the same page.

119

120

CHAPTER 5 ©° STRUCTURED PAGEFLOW

This policy is a sensible default policy for jJBPM-based pageflows, because they are
modal by nature. The jPDL rules are meant to determine all states and transitions
between states. The back button gives the user a way to bypass these rules and jump into
another state without following the necessary transitions, which could leave the context
data in an unpredictable state.

However, there are times when you do want to allow the user to back up during a
jBPM pageflow. In our “new gadget” wizard, for example, we don'’t really depend on the
sequence of the steps in the wizard. Each transition forward simply calls the same
interimSaveGadget () action method to save the interim state of the Gadget being created.
So it might be useful for us to enable the user to back up in the wizard, in addition to
using the “prev” transition buttons we’ve put into the interface.

To accomplish this, we use the back attribute on the page elements in our jPDL con-
figuration. If we set back="enabled" for a state in the flow, the user will be allowed to jump
into that state whenever he or she likes by using the back button. We can enable the
backing up to the first page of the wizard, for example, by enabling the back attribute
like so:

<pageflow-definition name="new-gadget">

<page name="core-data"
view-id="/wizard/start.jsp"
back="enabled">
<redirect/>
<transition name="next" to="features">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="cancel" to="end">
<action name="cancel" expression="#{gadgetAdmin.cancelGadget}"/>
</transition>
</page>

Obviously, if you allow the user to make asynchronous transitions in the pageflow
like this, you'll need to handle this in your application logic, so that the state data held in
the various contexts (session, conversation, etc.) is kept consistent. But this situation is
no worse than standard JSF navigation. And Seam’s context support (especially the con-
cept of conversations within sessions) helps make this a bit easier to manage. By dividing
up the user’s session into well-defined conversation “segments,” you reduce the problem
to keeping the conversation data consistent. And assuming that your conversations are
really well defined and represent a sensible grouping of interactions with the user, then
keeping conversation data consistent should be relatively straightforward.

CHAPTER 5 "' STRUCTURED PAGEFLOW

One situation that is important to expect with back-buttoning enabled is a user
backing up into a state in a pageflow when that conversation has already ended. The
conversation may have ended because the user ended it by following a transition that
explicitly ended the conversation. Or, the conversation may have timed out. Either way,
if you start to enable backing into states of your pageflow, it’s a good idea to deal with this
case for those states.

To help with this, Seam has extended jPDL to provide you a way to specify a view
that should be used when the user hits a state in a pageflow with a conversation that has
ended. There is another attribute that Seam has added to the page element, called
no-conversation-view-id. A user will be taken to this view when he or she backs up to this
pageflow state with an expired conversation. In our example, if a user backs up into the
“new gadget” wizard with an expired conversation, the most logical place to put that
user would be the administrative home page. So we would specify this on our page nodes
like so:

<pageflow-definition name="new-gadget">

<page name="core-data"
view-id="/wizard/start.jsp"
back="enabled"
no-conversation-view-id="/adminHome.jsp">
<redirect/>
<transition name="next" to="features">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="cancel" to="end">
<action name="cancel" expression="#{gadgetAdmin.cancelGadget}"/>
</transition>
</page>

Ending Pageflows

Pageflows are aligned with conversations, so ending a pageflow involves ending its sur-
rounding conversation. All the methods for ending conversations, as discussed in
Chapter 4, will also end any pageflow associated with that conversation. These methods
include executing an action method with an @End annotation, or traversing a link with
attributes that end the conversation, or hitting a page with an entry in pages.xml that
ends the conversation when that page is encountered.

121

122

CHAPTER 5 ©° STRUCTURED PAGEFLOW

Using jPDL, there is an additional way to end the conversation for a pageflow. Adding
an end-conversation element to a state definition in the jPDL will cause the conversation
(and pageflow) to end when that state is reached. We used this in our “new gadget”
wizard to end the pageflow when the user landed on the “end” state:

<page name="end" view-id="/adminHome.jsp">
<redirect/>
<end-conversation/>

</page>

We used this state as the destination for the “cancel” transitions on the first page
of the wizard and for the final confirmation page. If the user hits the Cancel button on
either of these pages, he or she will transition to this state, which ends the conversation
and lands the user back on the home page.

Advantages of jPDL

Now that we have our “new gadget” wizard fully implemented using jBPM, let’s revisit
some of the advantages of jPDL-based navigation versus JSF navigation rules.

Flexible Pageflow Through Encapsulation

One point in favor of jPDL is the way that it allows you to cleanly separate your applica-
tion code (action listeners included) from the view navigation rules. It even allows you
to separate the view display (i.e., the code in your pages) from the navigation rules. JSF
navigation rules provide some degree of encapsulation, but since JSF navigation is
defined in terms of concrete pages, it is tied more directly to the implementation details.

If you examine the action methods on GadgetAdminBean that are used as actions in our
“new gadget” pageflow (namely, interimSaveGadget (), saveGadget(), cancelGadget(),
saveGadgetType(), and saveGadgetFeature()), we've kept these free of any navigation
information. These action methods don’'t know when or how they are being triggered,
nor do they care. Some of them (saveGadgetType() and saveGadgetFeature()) are reused
from elsewhere in the Gadget Catalog application, outside of the pageflow.

The view code in the wizard pages is also very clean. There are commandButton controls
that reference logical transition names (like “prev” and “next”), but there’s no hardcoded
page transitions. Even the actions that are performed on the transitions are specified out-
side of the view code, in the jPDL.

CHAPTER 5 "' STRUCTURED PAGEFLOW

One practical advantage of all this is the ability to alter the pageflow without making
significant (or, in some cases, any) changes to the application code or the view code. Sup-
pose that we decided it made more sense to add the features to a new gadget before we
add the types. All we need to do is adjust the transitions in the jPDL to make this happen.
We change the “next” transition on the first page to take the user to the “features” state:

<page name="core-data" view-id="/wizard/start.jsp">
<redirect/>
<transition name="next" to="features">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>

</transition>
<transition name="cancel" to="end">
<action name="cancel" expression="#{gadgetAdmin.cancelGadget}"/>

</transition>
</page>

Then we change the “next” and “prev” transitions on the “features” state so that
“next” leads to the “types” state and “prev” returns the user to the “core-data” page:

<page name="features" view-id="/wizard/features.jsp">
<redirect/>
<transition name="next" to="types">
<action expression="#{gadgetAdmin.interimSaveGadget}"/>

</transition>

<transition name="prev" to="core-data"/>

<transition name="new" to="new-feature"/>
</page>

Finally, we adjust the “types” state so that “next” takes us to the final “confirm” state
and “prev” takes us back to the “features” state:

<page name="types" view-id="/wizard/types.jsp">
<redirect/>
<transition name="next" to="confirm">
<action name="interim-save"
expression="#{gadgetAdmin.interimSaveGadget}"/>
</transition>
<transition name="prev" to="features"/>
<transition name="new" to="new-type"/>

</page>

123

124

CHAPTER 5 ©° STRUCTURED PAGEFLOW

That'’s it. Now the wizard will follow the new pageflow, with no changes to our appli-
cation or view code.

Now, I should admit that we're getting off a bit easier than normal here, because in
our wizard we're using the same action for all of our “next” transitions regardless of the
destination state. That means we didn’t have to tweak any of the transition actions when
we changed the pageflow. But even if we did, those changes would have been fairly trivial
as well. And being able to restructure the pageflow with minimal impact on the rest of the
application can be a big advantage, especially with significant pageflows and ongoing
adjustments being introduced because of user feedback, business requirements, and
SO on.

Expressiveness of jPDL

Compared to JSF navigation rules, jPDL provides a more direct representation of the logi-
cal pageflow of the application. We could easily take the jPDL configuration in Listing 5-3
and generate (manually or automatically) the graphical pageflow for our wizard in

Figure 5-2. JBoss took this to the next level, providing a plug-in for the Eclipse IDE that
allows you to graphically view and edit jPDL pageflows. Of course, the same could be
done for JSF navigation rules (and, in fact, it has been done, since several tools exist to
graphically edit JSF rules as well). The difference with jPDL is that, since jPDL distin-
guishes between logical states and physical pages, we have the option of creating either
logical or physical pictures of our pageflow. In the case of our “new gadget” wizard, this
isn't much of an advantage, because all of our logical states have a one-to-one relation-
ship with our physical pages (“core-data” is mapped to start. jsp, “types” to types.jsp,
etc.). But in more complicated modal interfaces, it’s often necessary to use the same view
at multiple states in the logical pageflow. jPDL allows you to express this directly, while
it's only implicitly expressed in JSF rules since the logical states being implemented have
to be inferred from the various navigation cases where the same view is used.

Summary

In this chapter, you've seen how Seam’s integrated jBPM support has been used to imple-
ment a powerful alternative for defining pageflow in your application. Using jPDL XML
files, you can define structured pageflow to be followed within specific Seam conversa-
tions. There are advantages (richer configuration syntax, better separation of navigation
and application code) and disadvantages (more restrictive navigation) to jPDL over JSF
navigation rules, but luckily you can mix-and-match the two within your Seam applica-
tion fairly easily.

CHAPTER 5 "' STRUCTURED PAGEFLOW 125

We explored how jBPM pageflows are configured using a jPDL XML file that’s
deployed with your Seam application, and how jPDL allows you to specify the states,
transitions, actions, and conditional flows in your pageflow. And, as usual, you saw all of
this in action in our Gadget Catalog application by implementing a “new gadget” wizard
using jBPM pageflow.

CHAPTER 6

Security

Security is a natural part of nearly every online application. Any application that
requires some kind of personal service needs to know the identity of the user. Preferences
and data can’t be associated with you unless the application knows who “you” are. This is
the goal of authentication: securely identifying the users of a system.

Applications are typically put online so that many people can use them, not just
one. It is very rare, however, that you want everyone using your application to have the
same access rights. Some people have more or less access than others, depending on
the roles and permissions that they have been given. Authorization provides the tools
for assigning and verifying the access rights of users.

In this chapter, we are going to explore Seam’s support for authenticating and
authorizing users. First, I'll give you a high-level overview of the capabilities provided by
Seam. Then I'll describe some security-related extensions required in the next version of
the Gadget Catalog, and we'll implement them in the rest of the chapter using Seam’s
security services.

Seam Security Support

Seam directly supports the integration of security measures into your applications.
Specifically, it facilitates adding authentication and authorization features to your Seam
applications. As any security expert will tell you, there are many other aspects to be con-
sidered when it comes to security (identity management, encryption, intrusion
detection, etc.). But Seam focuses on the most common application needs, and the rest
can be integrated through other means.

Authentication

Seam helps you inject login functionality into your application, in areas where you need
to identify users and/or check to see whether they have rights to access particular pages,
functions, or data. Seam gives you the ability to require authentication at various levels
(page, JSF control, component, action method) using configuration file entries and/or

127

128

CHAPTER 6 = SECURITY

code annotations. The login process can be implemented using standard Seam compo-
nents and JSF forms, in conjunction with built-in components provided by Seam. Seam
also provides built-in components that support the handling of the user’s identity for
easy access from within the Seam contextual component model.

Authorization

You often need to authenticate users because you need to check their access rights. Again,
Seam helps you to authorize users at various levels in the application—you can specify
access limits for groups of pages, single pages, specific JSF controls, entire Seam compo-
nents, or specific action methods on components. These access rights are specified using
roles and/or permissions. Roles in Seam are simple named role assignments, like “admin”
or “sales-rep”, while permissions are named actions that can be performed in general or on
specific entities. Like the authentication services within Seam, you can specify access rules
for entities using configuration file entries and/or code annotations. It’s also possible to do
more advanced authorization management using JBoss Rules rulesets.

Seam Security vs. Java EE Security

Readers who are familiar with Java EE security features for web and EJB components
might be wondering how Seam’s security features relate to them. The short answer is that
they don’t. Seam’s security services are an independent system that is not integrated with
Java EE’s declarative or programmatic security features. User identities and roles in Seam
are sourced from Seam components and services, while Java EE uses the concept of
realms configured in the application server. Seam’s authentication is configured through
components.xml and the identity is stored in a Seam component, while Java EE uses
login-config elements in web.xml and stores the identity in the user’s runtime web/EJB
context. Seam’s programmatic role checking is done through EL expressions and/or
Seam component methods, while Java EE provides the isUserInRole() methods in web
and EJB components. And so on.

Seam does offer some crude integration with the Java Authentication and Authoriza-
tion Services (JAAS), which are the backing services behind the Java EE security services.
In the current released version of Seam (version 1.2.1), however, this integration is defi-
nitely not seamless (pardon the pun) and involves some fairly complicated configuration
gymnastics. These configuration details aren’t provided here, because they seem to be
very preliminary in nature, and not broadly useful in their current form. The integration
is also limited, since it only provides a common source for identities and roles, but no
shared authorization or authentication configuration.

In order to avoid complex configuration details, runtime conflicts, and potential
confusion, my recommendation would be to stick to one security model or the other
until there is better integration between the two. If you have a specific requirement to use

CHAPTER 6 © SECURITY

Java EE security, it’s best to use that exclusively and avoid using Seam’s security services.
Otherwise, you should definitely look to Seam’s security services for your Seam applica-
tion, since it provides a simplified model that blends right into Seam’s contextual
component model.

Gadget Catalog: Expansion Through Security

Our Gadget Catalog has gone about as far as it can go (farther, actually) without integrat-
ing security services into the application. Without any authentication or authorization
capabilities, all of our users are anonymous, and all users have equal access to all of the
functions of the interface. This isn’t practical, obviously. We may want to allow all users to
browse the Gadget Catalog without identifying themselves, but we will definitely want to
restrict access to the administrative functions of the system, such as adding new gadgets
to the catalog and editing their features. At a minimum, we need to know who is perform-
ing these operations so that we have an audit trail for key transactions (to answer
questions like, “Who deleted all of the mobile phones from the system?” or “Who has
provided the most gadget entries in the system?”). It’s also very likely that we will need to
restrict access to some of the functions in the system. Some users will be allowed to per-
form some tasks, others will not.

The Gadget Catalog product development team has decided to implement the
following security model for the application:

* Anonymous, unauthenticated users will be allowed to search the catalog and
browse the contents.

* In order to add a gadget to the catalog (using either the “new gadget” wizard
described in Chapter 5 or the basic gadget editing tools implemented earlier),
users must be authenticated. The user must have an account in the system and
will be required to log in before using these functions.

* The catalog will now record the identifier of the user who initially submitted the
gadget to the catalog. This will be used in the future to support various administra-
tive and community features, such as rewards for submitting large numbers of new
gadgets (thus increasing the value of the catalog).

* There will be two roles defined in the Gadget Catalog: “USER” and “ADMIN”". A
“USER” is a general user who self-registers to use the system and can enter new
gadgets into the catalog using the “new gadget” wizard. An “ADMIN” is a more
knowledgeable user (typically, a person who works for the Gadget Catalog site as
an employee) who performs administrative duties for the catalog. An “ADMIN” has
access to all of the interface functions, including the more advanced gadget editing
tools.

129

130

CHAPTER 6 " SECURITY

User Interface Access Control

The security model described previously implies some access-control restrictions on the
pages of the user interface. Figure 6-1 shows the pageflow of the new version of the Gad-
get Catalog and depicts the new access restrictions being imposed on the application at
this level. There are more fine-grained access control measures that will be necessary as
well, but I'll describe those in detail in the sections that follow.

Main Home and Search: (
Public Access New “Gadget Wizard”: Login Required

>

<> N (’ [

¢

PR,

a—a
W% W%

()

()

General Editing Functions: Administrators Only

Figure 6-1. Page-level access to the Gadget Catalog

The only new page being introduced is a general-purpose home page, part of the
“main home and search” section in the pageflow, which will be used for public and non-
administrative users as their default entry point for the application. This page and the
search results page will be publicly accessible, allowing any anonymous user to perform
searches against the Gadget Catalog. The “new gadget” wizard, however, will require the
user to be logged in, so that his or her ID can be recorded with the new gadget. The
“Admin Home” and the general gadget editing pages will only be accessible to users who
belong to the ADMIN” role.

Data Model Changes

We will maintain the user and role information within the Gadget Catalog database,
requiring the updates shown in Figure 6-2. A few new tables have been added to the
schema: the USER table holds the essential attributes for users of the application, the ROLE
table describes the various roles defined within the system, and the USER_ROLE_ASSN table
associates users with the roles that they have been assigned. We've also introduced a new
column in the GADGET table, SUBMITTER, that holds the identifier for the user who initially

CHAPTER 6

USER_ROLE_ASSN

submitted the gadget.
USER

USER_ID LONG

LOGIN VARCHAR(50)
PASSWORD VARCHAR(20)
NAME VARCHAR(100)
EMAIL VARCHAR(100)

GADGET

GADGET_ID LONG

NAME VARCHAR(50)
DESCR VARCHAR(100)
SUBMITTER LONG

USER_ID LONG
ROLE_ID LONG
ROLE
ROLE_ID LONG
NAME VARCHAR(50)
DESCR VARCHAR(100)
GADGET_TYPE_ASSN
GADGET_ID LONG
TYPE_ID LONG
GADGET_TYPE
TYPE_ID LONG
LABEL VARCHAR(20)
DESCR VARCHAR(500)

GADGET_FEATURE_ASSN

GADGET_ID LONG
FEATURE_ID LONG
GADGET_FEATURE
FEATURE_ID LONG
LABEL VARCHAR(20)
DESCR VARCHAR(500)

Figure 6-2. Security-related extensions to the Gadget Catalog database

131

132

CHAPTER 6 = SECURITY

Configuring Seam Security

Before you can use any of the Seam security measures described in the following sec-
tions, you need to enable the Seam security services in your application. There are some
basic configuration steps you have to take no matter what features you're using from
Seam’s security services. Other details are only needed if you use specific parts of the
Seam security services.

Minimal Configuration

In order to do any sort of authorization, you have to be able to identify the users of your
application. In order to identify users, you have to authenticate them in some way. At a
minimum, therefore, you'll need to enable some form of authentication support in Seam
if you want to use Seam for any security operations. Authentication support is enabled by
adding the security:identity element to your components.xml file. There are attributes on
this element that allow you to specify the type of authentication you require. The follow-
ing example shows the simplest use, where you plan to use Seam’s internal login services
with authentication handled by one of your Seam components:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns:security="http://jboss.com/products/seam/security"”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.com/products/seam/security
http://jboss.com/products/seam/security-1.2.xsd">

<security:identity authenticate-method="#{authenticator.login}"/>

</components>

Notice that we've included the XML schema for Seam’s security-related configuration
elements in our components.xml. As mentioned in Chapter 2, Seam organizes the configu-
ration details for individual services into separate schemas that can be referenced when
needed in components.xml.

The security:identity element will cause Seam to initialize its basic security serv-
ices, including the built-in identity component, and configure login services as specified
in the configuration entry. In this case, we’re using Seam’s internal login module, and the
login method on the authenticator component will be used to verify user identities. I'll
discuss the authentication services in Seam in a later section.

http://jboss.com/products/seam/security
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://jboss.com/products/seam/securityjboss.com/products/seam/security-1.2.xsd

CHAPTER 6 © SECURITY

Security EL Expressions

Seam provides some security-related EL expressions that can be used in your pages . xml
configuration and in your JSF pages. If you want to make use of these EL expressions,
you'll need to ensure that the EL libraries are available in the runtime environment of
your application. This can be done by including the el-ri.jar and el-api.jar libraries
bundled with Seam in your deployed archive. As discussed in Chapter 2, you can either
put these in the root of your EAR file and reference them in the application.xml file as jar
modules (making them available to all modules included in the application) or put them
into the WEB-INF/1ib directory of your web archive.

The JSF features of the security services also require that you include the
jboss-seam-ui. jar library in your application classpath. This library can also be included
in the web archive or the EAR file.

In order to use the extended Seam EL expressions in your JSF pages, you'll need to
make use of the Seam Facelet view handler to process your JSF pages. This is done by
adding the view handler to the application section of your faces-config.xml file, like so:

<faces-config>

<application>
<view-handler>
org.jboss.seam.ui.facelet.SeamFaceletViewHandler
</view-handler>
</application>

</faces-config>

Doing this, however, sets off a chain reaction that might be a bit of a surprise. By
installing the Seam Facelet view handler, you're also saying that all of your pages are
implemented using Facelets instead of JSP, because that’s what the Facelet view handler
expects. This means that you'll need to convert your pages to Facelets if you want to use
Seam’s security-related EL expressions. This is an unfortunate dependency, especially if
you have a lot of JSP pages in your application. But if you're already using JSF in your
application, you should find that the conversion of pages to Facelets is fairly straightfor-
ward.

Facelets is a topic that’s beyond the scope of this chapter, and the book for that
matter. You can examine the pages in the sample code for this chapter, however, and
compare them to the corresponding pages from earlier chapters, to see how pages can
be converted from JSP to Facelets. For more information on Facelets and their use, refer
to the Facelets project home page (https://facelets.dev.java.net).

133

https://facelets.dev.java.net

134

CHAPTER 6 = SECURITY

JBoss Rules

AsT'll discuss in the section “Authorization Services,” you can optionally use JBoss Rules
to define authorization rules for your application. If you decide to use this feature, there
are a number of support libraries you'll need to include in the classpath of your applica-
tion. These libraries are included in the Seam distribution, in the drools/1ib directory.
Add all of these as jar elements in the application.xml of your EAR file, or put them in the
WEB-INF/1ib directory of your WAR file.

Authentication Services

In the world of security, “authentication” refers to the identification of a user, based on
credentials of some kind. Usually these credentials are a username and password, but
more elaborate and more secure credentials can be used as well, like biometric scans
(thumbprints, retinas, etc.) or hardware tokens. The discussion here will be limited to tra-
ditional username/password schemes.

This section is going to explore various details of Seam’s authentication support.
I'll first show you how to configure a simple login page with an authentication action
method and how to access the authenticated user information from your Seam compo-
nents. Then you'll see how to integrate authentication into a Seam application by adding
login/logout links as well as requiring authentication for specific parts of the application.

Enabling the Authentication Services

If you've ever created your own login scheme in a web application, you know the usual
approach that’s taken to make this work: write a web form to collect the account and
password information, and write a form handler to take that information and verify it
against some back-end authoritative source (database, directory, etc.). If the user’s cre-
dentials check out, you need to load up some basic identifying attributes (user ID, name,
etc.) and make them available to the rest of the application. You might do this by tucking
an object into session data, or putting an encypted user ID into a cookie, or both.

Seam’s security services simplify the creation of authentication features through
some simple extensions of the Seam component and context models. In the section
“Configuring Seam Security,” you saw how to enable the basic Seam security services by
putting an entry into the components.xml file like the following:

<security:identity authenticate-method="#{authenticator.login}"/>

In practical terms, this entry tells Seam that we want all authentication requests to be
handled by the login() action method on the component named authenticator. So where
do authentication requests come from? In Seam’s security model, an authentication
request comes from a JSF form that uses a specific, built-in Seam component named

CHAPTER 6 © SECURITY

identity to handle the form attributes and the form submission. This component is ini-
tialized and made available in your Seam application when you add a security:identity
entry to your components.xml.

Creating the Login Form

A typical Seam login form is shown in Listing 6-1. The username and password fields
are collected through JSF input controls that are bound to the identity.username and
identity.password properties, respectively. The form submission is handled by the
identity.login action method.

Listing 6-1. Basic Seam Login Form

<IDOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<ui:composition template="template.xhtml">
<ui:param name="title" value="Login"/>
<ui:define name="main">
<f:view>
<h:form>
<table border="0">
<tr>
<td class="formLabel">User name:</td>
<td>
<h:inputText value="#{identity.username}"
id="name"
style="formInput"/>
</td>
</tr>
<tr>
<td class="formLabel">Password:</td>
<td>
<h:inputSecret value="#{identity.password}"
id="password"
style="formInput"/>

135

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

136

CHAPTER 6 = SECURITY

</td>
</tr>
</table>
<h:commandButton value="Login"
action="#{identity.login}"/>
</h:form>
</frview>
</ui:define>
</ui:composition>
</html>

Practical Tip If you've got sharp eyes, you will have noticed that this page looks a bit different from
our earlier examples. That’s because we’re using Facelets instead of JSP for the reasons described in the
section “Configuring Seam Security.”

A Facelets primer is beyond the scope of this book, as I said before, but you can easily
follow these examples once you understand a few high-level differences between JSP and
Facelets. Facelets uses XHTML in the page, and rather than importing JSP tag libraries,
we import good old XML schemas. Facelets ties these XML elements back to view han-
dlers through tag mappings provided by the providers of the JSF controls being used. In
our pages, we're using standard JSF controls as well as Seam controls, so both the JSF
implementation and the Seam framework have to provide these mappings, and in our
case they do.

The other big difference here is that we're using the Facelets UI composition features
to compose our page. We're importing a template file, template.xhtml, at the start of the
page, in a Facelets ui:composition tag. This template defines the general structure of a
page in our Gadget Catalog application, including any header and footer links and deco-
rations. The template also defines a page section called “main”, where we can plug in the
specific content needed for this particular page. Here, we're plugging in the login form,
within the element that starts with <ui:define name="main">, using standard JSF controls.

When this form is rendered, it will look like Figure 6-3.

CHAPTER 6 © SECURITY

Gadget Catalog: Login

Figure 6-3. Gadget Catalog login form

All of the decoration and header links (the CSS styles, the “Home” and “Log in” links,
and the title) were defined in the page template, template.xhtml. The form elements
defined in Listing 6-1 are rendered in the main part of the page.

Creating the Login Handler

When our login form is submitted, the Seam identity component referenced in the
commandButton will invoke the action method that we configured in the security:identity
entry in components.xml. In our example earlier, we specified this to be authenticator.login,
so we'll need to provide a component named authenticator with a login() method.

The sample component listed here could serve as a handler for our login page:

@Stateful

@Name ("authenticator™)

public class SamplelLogin implements Serializable {

public boolean login() {

boolean success = false;
Identity identity = Identity.instance();
String username = identity.getUsername();
String password = identity.getPassword();
// AUTHENTICATE THE USER HERE
return result;

@estroy @Remove
public void destroy() {}

137

138

CHAPTER 6 " SECURITY

The component is named “authenticator” using an @\ame annotation to match the
component reference we put into components.xml. The login() method returns a boolean
value. This boolean value will be used by the Seam login service as the indication of
whether authentication was successful or not. If the method returns true, the user is
assumed to be authenticated and is taken to the appropriate page. If the method returns
false, the default behavior is to generate a JSF message that simply says, “Login failed”,
and take the user back to the login page. Our page template displays any JSF messages
just below the page title, so a failed login will result in what you see in Figure 6-4.

Gadget Catalog: Login

Login failed
User name: ijirn
Password: |

Login

Figure 6-4. Login error message

The handling of successful and failed logins can be configured to some degree, and
I'll get into those details in the next section.

You'll notice in our sample login() method that the username and password
provided in the login form can be retrieved through Seam’s Identity class. This class
(in the org. jboss.seam.security package) has a singleton that is the implementation
behind the identity component we referenced in the login form. You can get the Identity
singleton using the static instance() method, as we're doing here, and then access the
properties using standard accessors. With those fields, you can then do whatever authen-
tication steps are necessary in your application.

In the Gadget Catalog, we're storing the user account information in the USER table in
the database, shown in Figure 6-2. We need to compare the username and password
fields from the login form to the LOGIN and PASSWORD columns in that table. The Seam-like
way to do this is to create a new entity bean, User, that represents the data from the USER
table, and then do an EJB-QL query in our login handler to verify the user’s credentials.

Listing 6-2 shows our new User entity bean. It includes all of the appropriate JPA
annotations to map its properties to the appropriate columns in the USER table. The bean
is a straightforward mapping of the USER table, though for now we've left out the user
roles stored in the ROLE table, linked through the USER_ROLE link table. I'll revisit that when
I discuss authorization in the section “Authorization Services.” Also, notice that we've
used an @Scope annotation to make this a session-scoped component. We want the user’s
authenticated identity to last the duration of his or her session, not just for a single con-
versation. Otherwise, the user will be forced to log in whenever a conversation ends.

CHAPTER 6

Listing 6-2. The User Entity Bean

@Entity
@Name("user"
@Scope(ScopeType.SESSION)
@Table(name="USER")
public class User implements Serializable {
private String mName = null;
private String mEmail = null;
private String mLogin = null;
private String mPassword = null;
private long mId;

public User() {}

@Id @GeneratedValue

@Column(name="USER_ID")

public long getId() {
return mld;

@Transient
public String getIdStr() {
return Long.toString(getId());

public void setId(long id) {
mId = id;

@Column(name="EMAIL")
public String getEmail() {
return mEmail;

public void setEmail(String email) {
mEmail = email;

@Column(name="LOGIN")
public String getlogin() {
return mLogin;

SECURITY

139

140

CHAPTER 6 = SECURITY

public void setlogin(String login) {
mLogin = login;

@Column(name="NAME")
public String getName() {
return mName;

public void setName(String name) {
mName = name;

@Column(name="PASSWORD")
public String getPassword() {
return mPassword;

public void setPassword(String password) {
mPassword = password;

With the User bean in place, we can complete the implementation of the login han-
dler for the Gadget Catalog. The full component class, Login, is shown in Listing 6-3.
We've expanded on the sample component shown earlier to include an injected
EntityManager that is used to make the necessary queries against the database. The query
is straightforward enough—we select from the USER table, matching the username from
the identity component with the LOGIN column and the password against the PASSWORD
column. If there is a match, the user is authenticated, and we set the user property
on our component to the resulting User object. The user property is annotated to be
outjected into the session context, so that other components and pages can use it to
render the user’s name, e-mail address, and so on, as well as do any necessary queries
against the database using the current user’s details.

Listing 6-3. Login Handler for the Gadget Catalog

@Stateful
@Name("authenticator")
public class Login implements ILogin, Serializable {

CHAPTER 6 © SECURITY

@In(value="user", required=false)
@0ut(value="user", required=false)
private User mUser;

@In(create=true)
private EntityManager gadgetDatabase;

public boolean login() {
boolean result = false;
if (getUser() == null) {
try {
Identity identity = Identity.instance();
Query q =

gadgetDatabase.createQuery("from User " +
"where login = :userName " +
"and password = :password")
.setParameter("userName", identity.getUsername())
.setParameter("password", identity.getPassword());
setUser((User) q.getSingleResult());
}
catch (NoResultException nre) {

FacesMessages.instance().add("Username/password do not match");

}
result = (getUser() == null ? false : true);

return result;

@Destroy @Remove
public void destroy() {}

public User getUser() {
return mUser;

public void setUser(User user) {
mUser = user;

141

142

CHAPTER 6 = SECURITY

In our login() method, a failed authentication is indicated when our query returns
no results. This tells us that the information provided by the user in the login form does-
n't match any records in the USER table. We catch the NoResultException thrown by the JPA
query and put an appropriate error message into the JSF message list.

At the end of the login() method, we determine the success of the authentication by
checking to see whether the user property has been set, and then return the appropriate
value.

Adding Login and Logout Links

At this point, all we have is our login form, login.xhtml, and the component that handles
the submissions from this form, Login. If we insert these pieces into our application, all
we'll have is a login form that a user has to find manually. We need to make it easier for
the user to log in, or else we're sure to hear complaints. One simple addition we can make
is to add a login link to the application pages:

<h:outputLink value="login.seam"
rendered="#{not identity.loggedIn}">Log in</h:outputLink>

This is a standard JSF outputLink that points to the login.xhtml page. There is one
new detail here, however. We're making the display of this link conditional on the
identity.loggedIn property. This property on the identity component is set to true if
the authentication action method (in our case, the Login.login() method) returns true
during a login. The identity component is scoped to the session context, so this property
can be used to verify whether the current user is authenticated. In our case, we only want
to display the login link if the user is not authenticated.

The user’s authenticated session will eventually end, either through a session expira-
tion because of inactivity or if the user closes the browser. It’s good practice, however, to
provide the user with a way to log out explicitly. That way he or she can be assured that
his or her authenticated session is gone and not worry about leaving the browser open to
do other work. Seam provides a logout () action method on the identity component that
can be used for this purpose. We can add a logout link to our pages by including the fol-
lowing in our Facelets template file:

<s:link action="#{identity.logout}" value="Log out"
rendered="#{identity.loggedIn}"/>

Notice that we're using the same loggedIn property on identity to determine whether
to render this link or not. A logout link doesn’'t make any sense to a user who isn’t logged
in yet.

CHAPTER 6 © SECURITY

Restricting Pages

We still have some work to do if we want to implement the access control levels
described in the section “User Interface Access Control,” where I described the various
sections of the pageflow and how they should be secured. The new requirements call for
only authenticated users to be able to access the “new gadget” wizard pages, and only
users with the administrator role are allowed to access the general editing pages. I haven't
discussed how to do role-based authorization yet, so for now, we'll just require authenti-
cated users for both sets of pages and add in the authorization rules later.

If you think about the various Seam configuration files, the obvious place to config-
ure page-level security is in pages.xml. Luckily, the Seam developers saw it the same way,
and they provide various security-related elements that you can use there.

In our case, we want all the “new gadget” wizard pages to require authentication.
This can be accomplished by adding the following page element in our pages.xml configu-
ration file:

<page view-id="/wizard/*">
<restrict>#{identity.loggedIn}</restrict>
</page>

The view-id attribute specifies all of the pages that reside in the wizard subdirectory
of the web application, which is where all the pages of the wizard live. In the page ele-
ment, we use a restrict subelement to control access to the pages. A restrict element
contains an EL expression. Technically, you can put any expression you like here, but for
practical reasons, you'll typically want this expression to be a “security expression” (i.e.,
an expression that checks the user’s authentication or authorization status using Seam’s
security components). I'll discuss the access control checks that you can use in the
restrict element when I discuss authorization. Authentication checks, like the one we're
doing here, are done using the same loggedIn attribute on the identity component that
you saw earlier.

No matter what EL expression you place within the restrict element, Seam handles
it the same way. If the expression evaluates to true, the user is taken to the page. If the
expression evaluates to false, Seam checks the user’s authenticated status. If the user is
not authenticated, a NotLoggedInException is thrown. If the user is authenticated, Seam
assumes the issue is access control and throws an AuthorizationException.

Another option for configuring authentication for a set of pages is to use the
login-required attribute on the page element. If set to true, this attribute has the same
effect as the restrict element shown previously:

<page view-id="/wizard/*" login-required="true"/>

143

144

CHAPTER 6 = SECURITY

The restrict element is more general-purpose, as you'll see when I discuss authori-
zation, since it allows us to specify a range of restrictions that can be placed on access to
the page(s). But if you simply need to ensure that users are authenticated before access-
ing a set of pages, the login-required attribute is a useful shortcut.

Our requirements call for the general gadget editing pages to be restricted to authen-
ticated users as well. We can use page restrictions in pages.xml for this as well, but first we
will move all of the pages we want restricted into their own admin directory. The pages had
all been sitting in the root of our web archive, and to restrict them we would have had to
use separate page elements for each page. With all the nonwizard editing pages moved
into the admin directory, we can now restrict them all with a single page element:

<page view-id="/admin/*" login-required="\true"/>

Handling Authentication Exceptions

As just mentioned, if a page restriction check fails when a user visits a page, and the user
isn't authenticated, a NotLoggedInException is thrown. We could let that exception go
unchecked, generating a system error page, but that’s not a very good user experience. It’s
much better to handle the exception in a user-friendly way. In this case, the most sensible
thing from the user’s perspective is to take him or her to the login form when this excep-
tion occurs. You can specify this kind of exception-handling behavior in Seam in
pages.xml, using an exception element.

The exception element is a general-purpose way to handle runtime exceptions in
Seam. You place an exception element in your pages.xml, specifying the type of exception
you want to handle, and what to do when this exception is thrown. In the exception ele-
ment, you can tell Seam to generate a specific HTTP error code, or you can redirect the
user to a specific page.

In our case, when a user hits a restricted page and isn't authenticated, we want to
send the user to the login page. That’s much more helpful than generating a default error
message and leaving it to the user to find the login page on his or her own. We can do this
by adding the following element to our pages.xml:

<pages>

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtml">
<message>You must be logged in to access this page</message>
</redirect>
</exception>

</pages>

CHAPTER 6 © SECURITY

With this exception handling! in place, a user who hits a restricted page will auto-
matically be taken to the login page, and the message we specified within the redirect
element will be put into the JSF messages list. Our login page displays these messages
just above the login form, so the user will see the screen in Figure 6-5 after being
redirected.

Gadget Catalog: Login

You must be logged in to access this page

e —

e E—

Figure 6-5. Authentication exception message on login page

Making a Smarter Login

The login scheme we've set up so far will ensure that only authenticated users will be
allowed to access the gadget editing pages. Unauthenticated users will be taken automat-
ically to the login page and asked to authenticate. But what happens after they log in?

As it stands, the user who logs in successfully will simply be left on the login page,
with a message indicating that he or she has authenticated successfully. This user has to
manually navigate back to the page he or she asked for in the first place. Ideally, we'd like
the user to be taken back to the protected page that was requested automatically. Luckily,
this is fairly easy to implement in Seam, using component-driven events.

Seam supports an event model where components can generate events, and other
components can listen for them and react when they occur. Seam’s internal compo-
nents, including the security components, generate a set of built-in events that can be
used to trigger application-specific behavior. In terms of authentication, Seam’s security
components fire two interesting events: a “notLoggedIn” event is fired when an unau-
thenticated user attempts to access a protected page, and a “postAuthenticate” event
is fired when a user successfully authenticates through the Seam security services.

You can specify actions that should be taken when events are fired, in your
components.xml file. The event element is used to specify an event, and an action child
element is used to specify a component action method that should be fired when the
event is fired. In our case, we want to catch the Seam notLoggedIn exception and have
Seam remember the page that the user requested. Then we want to catch the

1. This exception-handling feature in pages.xml can be used for general exceptions as well, to send
users to error-specific pages, or to cover all uncaught exceptions with a general-purpose error page.

145

146

CHAPTER 6 = SECURITY

postAuthenticate event and have Seam redirect the user to the page that it remembered
for the user when he or she generated the notLoggedIn event. These can be achieved by
adding the following two event elements to our components.xml:

<components>

<event type="org.jboss.seam.notLoggedIn">

<action expression="#{redirect.captureCurrentView}"/>
</event>
<event type="org.jboss.seam.postAuthenticate">

<action expression="#{redirect.returnToCapturedView}"/>
</event>

</components>

In these entries, we're using another built-in Seam component, redirect, to do the
storage and retrieval of the user’s target page. The redirect component has other utility
methods available, but for our purposes, these two provide exactly the functionality we
need.

With all this in place, the login behavior of our application is complete. When the
user enters the application and requests a restricted page (e.g., by clicking the “Add a new
gadget” link on the home page), he or she will not be authenticated yet, and two things
will happen. A notLoggedIn event will be generated, causing the first event handler in
components.xml to be triggered, saving the requested page through the redirect compo-
nent. Then a NotLoggedInException will be thrown, causing our exception handler in
pages.xml to be triggered, redirecting the user to the login.xhtml page. Assuming the user
successfully authenticates with the login page, a postAuthenticate event will be gener-
ated, triggering our second event handler in components.xml. The stored page URL will
be retrieved, and the user will be redirected to it.

Authorization Services

Now that the Gadget Catalog can authenticate users, we need to turn to the rest of our
security requirements. If you refer back to the section “Gadget Catalog: Expansion
Through Security,” you'll see that we need to ensure that only administrators can access
the general gadget editing pages. We know the identities of our users now (at least, we
do once they try to access a protected area), so the next thing we need to do is assign
them roles and make sure that Seam is aware of those roles. Once that’s done, we can
use these roles to specify access rights for users based on their roles.

CHAPTER 6 © SECURITY

Assigning Roles to Users

Seam knows whether the user is authenticated or not based on the loggedIn property on
the identity component, which is set based on the return value of the authentication
action method used to log in users (in our case, the Login.login() method). You also use
the identity component to inform Seam about the roles belonging to a user.

Before we can tell Seam about the roles belonging to Gadget Catalog users, we need
to map our ROLE and USER_ROLE_ASSN tables (refer back to Figure 6-2) to our object model.
As you saw in Listing 6-2, our User entity bean only contains the data stored directly in
the USER table. We'll create a new entity bean, Role, to hold the data stored in the ROLE
table, and then define a new persistent property on the User bean to hold all the roles that
the user has in the database.

The Role entity bean is shown in Listing 6-4. The JPA mappings being used are
straightforward, so I won’t discuss them in detail here.

Listing 6-4. Role Entity Bean

@Entity

@Table(name="ROLE")

public class Role implements Serializable {
private long mId;
private String mName = null;

null;

private String mDesc
public Role() {}

@Id @GeneratedValue

@Column(name="ROLE_ID")

public long getId() {
return mid;

public void setId(long id) {
mld = id;

@Column(name="DESCR")
public String getDescription() {
return mDesc;

public void setDescription(String desc) {

147

148

CHAPTER 6 = SECURITY

mDesc = desc;

@Column(name="NAME")
public String getName() {
return mName;

public void setName(String name) {
mName = name;

We then add a new roles property to the User bean, using a @anyToMany relationship.
The USER_ROLE_ASSN table is referenced in a @JoinTable annotation.

@Entity

@Name("user"

@Table(name="USER")

public class User implements Serializable {

@ManyToMany
@JoinTable(name="USER_ROLE_ASSN",
joinColumns=@JoinColumn(name="USER_ID"),
inverseJoinColumns=@JoinColumn(name="ROLE_ID"))
public List<Role> getRoles() {
return mRoles;

public void setRoles(List<Role> roles) {
mRoles = roles;

With these additions in place, the users that are created in the Login.login() authen-
tication method will now have their roles loaded from the database. We can make Seam
aware of the user’s roles using the addRole() method on the identity component:

@Stateful
@Name ("authenticator™)
public class Login implements ILogin, Serializable {

CHAPTER 6 © SECURITY

public boolean login() {
boolean result = false;
if (getUser() == null) {
try {
Identity identity = Identity.instance();
Query q =
gadgetDatabase.createQuery("from User " +
"where login = :userName " +
"and password = :password")
.setParameter("userName", identity.getUsername())
.setParameter("password", identity.getPassword());
setUser((User) q.getSingleResult());

if (getUser() != null) {
// Register the user's roles with the Seam security system
for (Role r : getUser().getRoles()) {
identity.addRole(r.getName());

}
catch (NoResultException nre) {
FacesMessages.instance().add("Username/password do not match");

}
result = (getUser() == null ? false : true);

return result;

Remember that the identity component is a session-scoped component, so each
user will have his or her own identity. The additional code that we added to the Login
component tells Seam that the user who just logged in has all of the roles that are
associated with his or her user record in the database.

Notice that Seam uses a simple string value for the roles. We're using the name prop-
erty on the user’s Role objects as the value for the roles on the user’s identity, and this
property on Role is mapped to the NAME column in the ROLE table. This is an important
fact, because these role names are the same names that we will use to assign role-based
access control in our application.

149

150

CHAPTER 6 = SECURITY

Specifying Page Access Rights

Now that Seam knows the roles assigned to the user in the Gadget Catalog database, we
can use these roles to assign role-based access rights to pages and other parts of the
Gadget Catalog.

Page-level authorization can be done using restrict subelements on page elements
in pages.xml. This is the same element we used to require authentication for certain
pages in our application.

Authorization restrictions are made using additional conditions on the security-
related EL expression in the restrict element. Seam provides an EL function,
s:hasRole(), that can be used to check whether the current user has a particular role.
According to the security requirements listed in the section “Gadget Catalog: Expansion
Through Security,” we only want administrators to access the general gadget editing
pages, which now sit in the admin directory of our web application. Assuming that we use
the name “ADMIN” for the administrator role in its entry in our ROLE table, we would
adjust the restriction on these pages in pages.xml:

<page view-id="/admin/*">
<restrict>#{identity.loggedIn and s:hasRole('ADMIN')}</restrict>
</page>

Once this new restriction is in place, Seam will still check to see whether the user is
authenticated (since we still have the identity.loggedIn clause in the expression). If the
user is logged in, Seam checks the roles that have been associated with the user in the
identity component. If any user without the “ADMIN” role attempts to access a page in
the admin directory, an AuthorizationException will be thrown, and the user will see a
default error page.

Ideally, we'd like to avoid having the user see raw error pages generated by the appli-
cation server or the web server. The same way we customized the handling of the
NotLoggedInException earlier, we can specify how we want an AuthorizationException
handled using an exception element in pages.xml. In our case, an unauthorized user will
be sent back to the main home page, with a message stating that he or she doesn’t have
access to the requested page:

<pages>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/index.xhtml">
<message>We're terribly sorry, but you don't have the privileges
to access the page you requested.</message>
</redirect>
</exception>

</pages>

CHAPTER 6 © SECURITY

We chose to send the unauthorized user to the main home page because it’s guaran-
teed to be accessible to all users. With this exception handling in place, if an
unauthorized user tries to go to any page in the admin area, he or she will see the mes-
sage shown in Figure 6-6.

Gadget Catalog: Home

We're tarribly sorry, but you don't have the privileges o access the area you requested.

o —

Figure 6-6. Authorization exception message on home page

Component-Level Restrictions

There are times when you will need to specify access-control restrictions on components
and their methods, rather than at the page level. You may want to do this, for example,
when a certain category of operations is performed by specific components in your
application, and rather than enumerating all the places in the user interface where these
operations are used, you simply want to restrict access to the components themselves.
This allows the user interface and the page organization to change however it needs to,
and your access restrictions will remain in force.

Back in the beginning of this chapter, we reorganized our pages so that all of the
“new gadget” wizard pages are in the wizard directory of our application (where they
always had been), and all of the general gadget editing pages are in admin. We did this to
simplify our restrictions in the pages.xml file, allowing us to define one page element for
each web directory and put the appropriate restriction on each.

Another approach we could take is to restrict access at the component level. Seam
provides an @Restrict annotation that can be applied at the class or method level, and
it allows you to restrict access to the entire component or specific methods on the
component. The @Restrict annotation can include a security EL expression, similar to
the EL expressions we used in the restrict elements in pages.xml. And, if you use an
@Restrict annotation, it is handled the same way that the restrict elements are han-
dled in pages.xml. When the user performs an action in the web interface that requires
the component or method with the @Restrict annotation, the EL expression is evalu-
ated. If it returns true, the access is allowed. If it returns false, Seam checks the user’s
status.

151

152

CHAPTER 6 = SECURITY

If the user is not authenticated, a NotLoggedInException is thrown. If the user is authen-
ticated, an AuthorizationException is thrown.

In our Gadget Catalog application, all of the gadget editing functionality is provided
by our gadgetAdmin component, which is implemented by the GadgetAdminBean class.
Rather than putting restrictions on pages in pages.xml, we could also choose to restrict
access to the gadgetAdmin component. We could add the following @Restrict annotation
to our GadgetAdminBean class:

@Stateful

@Name("gadgetAdmin")

@Restrict("#{identity.loggedIn}")

public class GadgetAdminBean implements IGadgetAdminBean {

This will restrict the gadgetAdmin operations to authenticated users only. If we look
back at our original restrictions in pages.xml, we had two different restrictions for the
two web directories: wizard/* was restricted with #{identity.loggedIn} (any authenti-
cated user is allowed), while admin/* was restricted with #{identity.loggedIn and
s:hasRole('ADMIN')} (only authenticated users with the “ADMIN” role are allowed). We
could add the authorization clause to our @Restrict annotation, but this would apply
the restriction to any use of the gadgetAdmin component, including the places in the
“new gadget” wizard where gadgetAdmin is used. Instead, we could mix page-level restric-
tions with component-level restrictions, by leaving the gadgetAdmin restriction as it is
earlier, and adding an additional authorization restriction to the admin directory in
pages.xml:

<pages>

<page view-id="/admin/*">
<restrict>#{s:hasRole('ADMIN")}</restrict>
</page>

</pages>

While this example demonstrates how component-level restrictions can be established
with the @Restrict annotation, it won't actually meet our original security requirements at
the beginning of this chapter. We wanted the main home page and the search results page
to be unrestricted (no login required). But the main home page and search results page
both reference the gadgetAdmin component in order to render the search form and display
the results. Since the gadgetAdmin component has been restricted, users will be taken to the
login screen when they access either of these pages as well. So in the end, we would have to
revert back to the page-level restrictions in pages.xml after all.

CHAPTER 6 © SECURITY

Advanced Authorization

Sometimes user roles aren't sufficient for defining access control rules in an application.
You may need to use more complex, dynamic logic to determine whether a user should
be given access to specific pages, components, or methods.

Seam supports two approaches for implementing more complex authorization. The
first, arguably the most straightforward, involves writing custom logic in your Seam com-
ponents to check authorization. The second involves using JBoss Rules to implement
your authorization rules, and is more involved.

Custom Authorization Expressions

You saw how EL expressions can be used in either the restrict element in pages.xml or
a @Restrict annotation on a Seam component. As already discussed, this expression is
evaluated, and if it is true, access is granted, and if not, the appropriate exception is
thrown (NotLoggedInException if the user is not authenticated, AuthorizationException
otherwise). So far, we've only used terms in these expressions from the Seam security
services. Specifically, we've used identity.loggedIn to check the user’s authentication
status and s :hasRole() to check for roles. But there’s nothing restricting us from using
attributes and logic on our Seam components as terms in these restriction checks.

Suppose, for example, that we wanted users to have full access to edit gadgets that
they submitted to the Gadget Catalog. In other words, users would need the ADMIN”
role to access the gadget editing pages, but any user can use the gadget editing pages to
edit the gadgets that he or she submitted to the database. This logic can’t be easily imple-
mented using simple roles pulled from our ROLE and USER_ROLE_ASSN tables. A user’s access
to the editing pages has to be determined at runtime, using his or her User object and
comparing it to the submitter property on the gadget being edited.

It’s actually very easy to implement this dynamic access control logic. First, we
add a new Boolean “property” to our gadgetAdmin component, called “gadgetSubmitter”.
This property should be true only if the submitter property of the current gadget (the
activeGadget property on gadgetAdmin) is the same user as the current authenticated
user. We implement this property with a single isGadgetSubmitter() method on
GadgetAdminBean, where we dynamically determine the value of the property by checking
the current user and the submitter of the active gadget:

public boolean isGadgetSubmitter() {
boolean owner = false;
if (getActiveGadget() != null &%
getActiveGadget().getSubmitter() != null &&
getUser() != null &%
getActiveGadget().getSubmitter().equals(getUser())) {
owner = true;

153

154

CHAPTER 6 = SECURITY

}

return owner;

}

We needed to add another property, user, to GadgetAdminBean, and we inject it from
the session scope using an @In annotation:

@In(value="user", required=false)
private User mUser;

The user object is initialized and outjected into the session scope by the authentica-
tor component, as you saw back in the section “Authentication Services.”

With this new property in place, we can adjust the restriction expression for the admin
directory in pages.xml to allow any user to use those pages to edit a gadget that he or she
submitted:

<pages>

<page view-id="/admin/*">
<restrict>#{identity.loggedIn and
(s:hasRole('ADMIN') or gadgetAdmin.gadgetSubmitter)}</restrict>
</page>

</pages>

Of course, we could use this same approach with an @Restrict annotation on a
component or component method.

This use of custom component methods to implement authorization logic offers
almost unlimited flexibility. You can use any available information to assess whether a
user should have access to a specific portion of the application.

Authorization with JBoss Rules

Seam has also integrated its security services with JBoss Rules, allowing you to extend the
authorization logic to include rules implemented in the JBoss Rules engine. A full tutorial
on JBoss Rules is outside the scope of this chapter, but I can walk you through the basics
of setting up JBoss Rules in your application and show you a simple example of using a
rule to check permissions.

First we need to introduce the concept of Seam permissions. In addition to
the s:hasRole() EL function that you've already seen, Seam also provides the
s:hasPermission() EL function. This can be used to check whether a user has a specific
permission. In Seam, a permission is defined as the combination of a name and an
action. Usually, but not necessarily, the name refers to some entity in the application.

CHAPTER 6 © SECURITY

In our case, the name might be “gadget” or “user”. The action refers to some action that
the user might take, such as “edit” or “delete”. You can check for a permission in a security
expression (in either the restrict element in pages.xml, or in an @Restrict annotation)
using the s:hasPermission() function. The s:hasPermission() function takes three argu-
ments: an entity name string, an action string, and (optionally) a Seam component that
is the target of the action to be taken. If you are simply checking a general permission,
not specific to a particular component, you can specify the component argument as null.

In our case, we could change the access check on the admin directory from a role-
based check to a permission-based check. Rather than checking for the “ADMIN” role
using s:hasRole(), we can check for a permission with an entity name of “gadget” and the
action “edit”, using s:hasPermission():

<pages>

<page view-id="/admin/*">
<restrict>
#{identity.loggedIn and s:hasPermission('gadget', 'edit', null)}
</restrict>
</page>

</pages>

When you use the s:hasPermission() EL function, it triggers JBoss Seam to check for
any rules that should be fired for the specific permission. Rules are defined in a JBoss
Rules rule definition file, typically with the suffix .drl, and they are written in a rule
language specific to JBoss Rules. Here’s a sample .dr1 file that defines a rule for our
permission check:

package org.jimfarley.gadgets;

import org.jboss.seam.security.PermissionCheck;
import org.jboss.seam.security.Role;

rule UserIsAdmin

when
p: PermissionCheck(name == "gadget", action == "edit")
Role(name == "ADMIN")
then
p.grant();
end;

I can’t provide a full primer on rule syntax, but this rule file shows you some of the
basic details. The .drl file contains a single rule, “UserIsAdmin”. The when clause of the

155

156

CHAPTER 6 = SECURITY

rule specifies the conditions that must exist in “working memory” in order for the rule to
fire. Working memory is essentially the set of runtime data that is made available to the
rules engine for processing rules. The first condition in our when clause states that the
working memory has to contain a permission with a name of “gadget” and an action of
“edit”. When you use the s:hasPermission() EL function in a security expression, it auto-
matically injects a permission with the given arguments into the rule engine working
memory. So in our case, a permission matching this first condition will be present when
the security expression is encountered. The p: in front of the condition declares a vari-
able named “p” and assigns it to the permission being checked for.

The second condition states that the working memory must contain a Role with a
name of “ADMIN”. Seam also inserts all of the current user’s roles into the working mem-
ory, so this condition effectively says that the current user has to have the “ADMIN” role.

If all the conditions in the when clause are true, the then clause is executed. In our
case, the then clause contains a single statement, p.grant() ;. This takes the permission
variable declared in the when clause and grants the permission to the current user.

If we put this all together, here’s what we have. When the s:hasPermission() function
is used in a restriction EL expression, it injects the specified permission into working
memory, along with the user’s current roles, and then causes the JBoss Rules engine to
check for any rules to fire. Our rule fires when a permission of “edit” on an entity named
“gadget” is being checked, and when the user has the “ADMIN” role. When the rule fires,
the permission (“edit” on “gadget”) is granted to the current user. The s:hasPermission()
function will return true, and the overall security expression will evaluate to true, thus
allowing the user to access the admin directory of the web application. This rule, then,
takes the place of our use of s:hasRole("ADMIN").

You can do much, much more with JBoss Rules than this. But this gives you a sense
for the structure of rules, and for the interaction between Seam’s security services and the
JBoss Rules engine.

Summary

In this chapter, we explored the security services provided by JBoss Seam. We started by
looking at how Seam supports the authentication of users using a simple component
action method. We wrote a simple JSF page for the login form, tying the form to our
authentication method. You also saw how to restrict pages in pages.xml, forcing Seam to
authenticate the user before allowing him or her to access the pages. To make our Gadget
Catalog login process more user friendly, we specified exception handlers in
components.xml that will automatically redirect the user to our login form when he or she
attempts to access protected areas. We also used Seam event handling to capture the tar-
get URL before sending the user to the login page, and then redirecting the user to the
target URL once the login process completes successfully.

CHAPTER 6 © SECURITY

Once we had authenticated our users, we turned to authorizing them as specified in
our application requirements. We adjusted our User component to load the user’s roles
from our database tables, and also adjusted our authentication method to register the
user’s roles with the Seam identity component. We then used the s:hasRole() EL function
to check for these roles in our restriction expressions. We also saw how more complex
authorization logic could be implemented using custom component methods and/or
JBoss Rules.

More granular checks can also be applied at the component and method level, using
the @Restrict annotation. The same security expressions that we used in pages.xml can be
used in the @Restrict annotation.

157

CHAPTER 7

Business Process Management

In this chapter, we look at business processes and how business process management
(BPM) is supported by Seam. I've already discussed JBoss Business Process Management
(jBPM) in Chapter 5, when we explored Seam’s pageflow features, which are built on
jBPM. As mentioned in that chapter, while BPM can be applied effectively to manage
pageflow, it’s actually a much broader field, supporting tasks implemented in a variety
of ways (web pages, business components, business rules, etc.), connected together with
a structured workflow that can span multiple users across potentially long periods of
time. In this chapter, we look at this broader application of BPM and how jBPM can be
used within Seam to define and execute business processes.

Business Processes, jBPM, and Seam

In Chapter 5, I described pageflow as a specific subset of business process management.
Pageflow is concerned with how a single user moves between web pages during a single
session. And in the case of Seam, a jBPM pageflow is actually part of a single Seam con-
versation within a single session. This is just one very specific application of business
process management.

In this section, I'll first introduce you to some of the basic concepts of business
process management, then show you how jBPM models these concepts, and finally
demonstrate how Seam integrates jBPM into its application framework.

Business Process Concepts

Business process management covers a broad realm using very general concepts that can
be applied to many different practical situations. Any situation that involves structured
workflow leading users through a series of tasks could be modeled using BPM. That’s not

159

160

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

to say that all these situations should be modeled using BPM. BPM frameworks bring
their own overhead, and you need to be sure that the benefits are there before applying a
process modeling tool. When such a situation arises, though, BPM can be a very powerful
tool to help clarify and execute structured workflows that are defined by user experience
goals, business rules, regulatory constraints, or all of the above.

In business process management, actions can be initiated by a variety of events
beyond just users visiting web pages. Batch jobs can fire off messages to a queue, signal-
ing the end of a task and a transition to a new state. Users can send e-mail messages to a
target mailbox that triggers the start of an entire process. Any event that can be detected
by the system can be used within a business process.

Business processes are also typically larger in scope, in terms of both timeframe and
number of users involved. A pageflow involves a single user in a single web session, and
web sessions typically last on the order of minutes. A business process can involve multi-
ple users over a much longer period of time. Some processes take hours, days, weeks,
even months to complete. Editing an article for a magazine or web site, for example, can
be modeled as a business process, involving one or more authors, one or more editors,
plus technical reviewers, production staff, and so on. The entire process can take several
weeks or even months, involving interactions with several systems along the way:.

Business Process Models

A business process consists of a set of nodes, or states, linked by various possible transi-
tions. Events in the business process cause various actions to be executed. These events
include arrival at a particular state in the process, a transition between states, or specific
outcomes of other actions.

As a practical example, Figure 7-1 shows a graphical model of a simplified business
process for editing articles. There are eight nodes in this workflow. Six of them are named
states in the process: the starting state (“start-state”), a “write article” task, a “tech edit” task,
a “copy edit” task, a “revise article” task, and the end state (“end”), signaling the completion
of the article and the end of the process. The other two, unnamed nodes are a fork, between
the article submission and the two parallel editing tasks, and a join, where the two parallel
editing tasks transition to the article revision task. Various transitions exist between these
nodes. Some of these are named, indicating specific actions that have to take place in order
for the transition to take place. Others are not named, either because there is only one tran-
sition out of a given node, or the nature of the transition is obvious from the start and end
nodes.

start-state

Write

article

submit

_ resubmit
Revise

article

complete

¥
o

end

Figure 7-1. Business process for editing articles

Business Processes + Java = jBPM

CHAPTER 7

BUSINESS PROCESS MANAGEMENT

A business process management framework, such as jBPM, supports the definition and
orchestration of business processes in code. It maintains the process model in terms of

the allowed states, the various transitions between states, and the actions and events that
can trigger these transitions. BPM also includes the concept of actors, allowing you to
specify what type of user can and should perform specific tasks in the process.

The jBPM framework is a Java-based BPM suite. It’s aimed at configuring and manag-

ing business processes that are backed by Java-based processes, whether those are running
in a Java EE application server or in a standalone Java workflow application of some sort.
jBPM maps the BPM concepts discussed in the previous section into Java APIs and compo-

nents, allowing your Java code to interact with workflows, and to implement tasks within

the workflow.

161

162

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

The jBPM Process Model

In jBPM, a business process is made up of a set of nodes connected by transitions.

A process has a single start node and one or more end nodes. A process execution takes
place by following the transitions from the start node, through allowed transitions, to
other nodes in the graph, until an end node is reached. As each node is reached in the
process graph, the node is “executed.” What it means to “execute” a node depends on
the type of node it is, as you'll see shortly.

A business process can be executing one or more paths through the workflow at the
same time. In our article editing example in Figure 7-1, we start at the “start-state” node,
and then hit the “write article” node. Once this node executes and completes, we enter a
fork node, and execution splits into two concurrent paths: one through the “tech edit”
node, and the other through the “copy edit” node. Each of these execution paths will run
independently, and jBPM will manage a token for each that points to the current node
being executed in that path.

Transitions link nodes together, defining the allowed execution paths through the
process. Process events, such as the completion of a task, cause transitions to be taken
from the current node in the execution to another. If there are multiple transitions that
can be taken from a node, the transition(s) to take will be indicated in the event that trig-
gers the transition. In the article editing example, there are two possible transitions from
the “revise article” node, named “complete” and “resubmit”. The transition that will be
taken is determined by the outcome of the “revise article” task, in this case.

The jBPM process model supports the following types of nodes:

¢ State node: A state node represents a simple state in the process. When the state
node is entered in an execution path, it causes the execution path to wait in this
state until some event signals a transition to be followed. The event will have to
be raised by some external system.

e Task node: A task node defines a piece of work that has to be performed in order
to push the process forward. The execution path will transition off of the node
once the task is complete, and the transition to take will be determined by the
outcome of the task.

* Decision node: A decision node specifies criteria that should be used to determine
the path to be taken by the execution. Each possible transition has its own criteria,
and the first one that evaluates to true is the one that’s followed.

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

* Fork node: A fork node causes the execution to split into multiple, concurrent exe-
cution paths. In the article editing example, the “write article” node leads to a fork
that causes the execution to split into two concurrent paths. Each path transitions
immediately to the next node of the graph: one transitions to “tech edit”, the other
to “copy edit”.

* Join node: A join node executes only when all of the inbound transitions to the
node are followed, and then execution follows a single path out of the node. In the
article editing example, the “tech edit” and “copy edit” nodes have transitions that
lead to a join node. Once the execution paths through each of these nodes transi-
tion to the join, the execution is merged into a single path, and the execution
transitions to the “revise article” node.

* Custom nodes: jBPM allows you to also define your own custom nodes. These cus-
tom nodes allow you to specify your own behavior in terms of what happens when
execution arrives at the node. Custom nodes are rarely used, but can be useful in
cases where there’s some automatic task that needs to be performed during a
process.

In addition to nodes and transitions, a jJBPM process can also be annotated with
actions. An action is performed when execution events, such as entering a node, leaving
anode, or following a transition, occur. An action does not drive the execution forward,
like a task on a task node. An action is just code that’s run when the execution moves
forward in the process.

jBPM Process Definitions

BPM suites typically make use of some kind of process definition language. These allow
you to configure a workflow in an external configuration file of some sort, separate from
the code that implements the various tasks and rules in the process. jBPM primarily'
makes use of an XML format called the jBPM Process Definition Language (jPDL) for
process definitions. You saw a specific flavor of jPDL in Chapter 5 when you saw how
Seam uses jBPM for pageflow.

Listing 7-1 shows a jPDL definition that corresponds to the article editing workflow
shown in Figure 7-1. The states, forks, and joins depicted in the graphic are represented
here using start-state, state, end-state, fork, and join XML elements from jPDL. The
transitions between states are modeled using transition elements within the various
nodes.

1. jBPM can actually be used with various process definition languages, using a plug-in scheme provided
with the framework. The industry-standard BPEL definition language has been integrated into jBPM
as an add-on, for example. But for the purposes of this chapter, you can assume that process defini-
tions are described using jPDL.

163

164

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

Listing 7-1. jPDL for Article Editing Process

<process-definition>
<start-state>
<transition to="write article" />
</start-state>
<state name="write article">
<transition name="submit" to="edit fork" />
<transition name="cancel" to="end" />
</state>
<fork name="edit fork">
<transition name="tech-edit" to="technical edit" />
<transition name="copy-edit" to="copy edit" />
</fork>
<state name="technical edit">
<transition to="edit join" />
</state>
<state name="copy edit">
<transition to="edit join" />
</state>
<join name="edit join">
<transition to="revise article" />
</join>
<state name="revise article">
<transition name="resubmit" to="edit fork" />
<transition name="complete" to="end" />
</state>
<end-state name="end" />
</process-definition>

We'll explore more of the format and options in jPDL process definitions in our
Gadget Catalog example. This representation of the article editing process, however,
shows you how direct the mapping is between a flow diagram like Figure 7-1 and a jPDL
representation like Listing 7-1.

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

Integration of jBPM and Seam

jBPM brings business process modeling to Java environments in general, but if we're
developing applications using the Seam environment, we'd prefer to have jBPM inte-
grated into the component and conversation model that is the basis of Seam. And that’s
precisely what the Seam developers have done for you. Rather than just using the jJBPM
API to manage process details, Seam allows you to use the same annotation and configu-
ration methods that you use for other aspects of Seam services.

In Seam, a jBPM process operates within a business process context, as I mentioned
in Chapter 4 when I discussed Seam’s various runtime contexts (refer back to Figure 4-2).
A process instance (and its business process context) begins when you execute an action
method annotated with the @CreateProcess annotation. Every task in a jPBM process runs
within a conversation context. Tasks can be initiated using other code annotations, such
as @BeginTask or @StartTask, on action methods. Tasks are complete when an @EndTask
method is invoked during the conversation. This also ends the task conversation.

When utilizing jBPM within Seam, a process task can be tied to an action method on
a Seam component, a series of interactions with a user, or an entire pageflow running
within a conversation and modeled using jPDL.

Figure 7-2 depicts a sample instance of the article editing process running within a
Seam application. The figure shows three separate users interacting with a Seam applica-
tion. At some point during the first user’s initial conversation, he or she triggers the start
of the article editing process by executing an action method with an @CreateProcess
annotation. Later in this same session, the same user starts the “write article” task by
invoking an action method annotated with an @StartTask annotation. The conversation
and task are ended by an action method with an @EndTask annotation. The business
process execution moves along to the editing fork and waits for the “copy edit” and “tech
edit” tasks to execute. Two other users perform these tasks by executing @StartTask meth-
ods and finish them with @EndTask methods. When both tasks complete, the process
execution moves to the join node, and then to the “revise article” task node. The first user
comes back to the application and performs this task, and then the process completes.

165

166 CHAPTER 7 ©" BUSINESS PROCESS MANAGEMENT

| Business Process \
resubmit
| Copy |
. start-state edit fet end
Y. ¥ Revise \SOmplete

| .A > article

- x ‘ R

1 AY
I ll : \‘ ',) A A I| \‘

! \ !
| H @StartTask @StartTask, @StartTask‘ @StartTask '
@CreateProcess ,' @EndTask ' @EndTask- @EndTask .I @EndTask

Application

1Session
I

| Request Request Request

o o
=\ 0
«Q (=) (.Q
@ @ @

Request

o
(=)
@

Figure 7-2. Seam execution of the article editing process

There are a few details to note in the way jBPM processes map into a Seam applica-
tion. First, the entire business process executes within a business process context,
and this context extends across one or more user sessions, and can even span one or
more application contexts. This means that the process state has to be maintained across
application restarts (e.g., the application server is bounced, or the application archive is
redeployed). This, in turn, means that jBPM has to be persisting the process state some-
place, ideally in a database. And that’s exactly what jBPM will do for you. This requires
some configuration of the jBPM persistence operations, however, as you'll see in a later
section on configuring jBPM in Seam.

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

Gadget Catalog: Verifying New Gadgets

In Chapter 6, to demonstrate the authentication and authorization features provided by
Seam’s security capabilities, we added support for general users of the Gadget Catalog,
allowing them to directly enter new entries for the catalog. This extension of the system
is a double-edged sword, though. True, allowing public users to enter new gadgets will
increase the amount of information in the Gadget Catalog, and that could increase its
value as well. But the value of the catalog is also measured in terms of the quality of the
information it contains. If inaccurate information on devices starts to creep (or flood)
into the Gadget Catalog, the value of the system to users will drop, and fast.

One way to fix this problem is to introduce a review process. Appointed administra-
tors will be given the responsibility for verifying all new entries put into the Gadget
Catalog by public users. They’ll ensure that new entries (gadgets, types, or features) aren’t
duplicates of existing entries, and that the information about the devices is accurate and
complete.

In order to distinguish between reviewed and unreviewed gadgets, types, and fea-
tures, we'll need to introduce the concept of a “status code” to our object model and data
model. New entries provided by public users will be given an unreviewed status, and
once a Gadget Catalog administrator has reviewed the details of the entries and made
any adjustments, the entries will have their status changed to a reviewed status. In addi-
tion, we want to notify the original submitter of an entry about the status of those entries.
This will allow him or her to examine any changes made by the administrators and raise
any concerns he or she might have (everyone makes mistakes, even administrators). This
requires that we keep track of who originally submitted a gadget, type, or feature entry, so
that we can notify them when the status changes and prompt them to check the final ver-
sion of these entries.

Figure 7-3 shows the updated object model for the expanded Gadget Catalog. We've
introduced a new Status object, which will hold the code and description for the status of
Gadget, GadgetType, and GadgetFeature objects. We've also added new submitter properties
to Gadget, GadgetFeature, and GadgetType objects. These properties reference User objects
that represent the user who originally entered the entries.

167

168 CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

GadgetType 0.1]
Gadget 0.* label:string T submitter-
0.1 - name:string >—— description:string |[O————
b description:string
[
submitter 0. 0.1 .
GadgetFeature [©—— submitter-
label:string 0.1
description:string [O—"——
StatusCode
code:long
l!ser desc:string
name:string
email:string
0.. | login:string
id:long
Role
name:string
desc:string

Figure 7-3. Updated Gadget Catalog object model

Figure 7-4 depicts the updated data model we’ll need to support our new object
model. We've introduced a new STATUS_CODE table to store the allowed values for the status
codes on gadgets, types, and features. The GADGET, GADGET _TYPE, and GADGET_FEATURE tables
have all had STATUS columns added, as foreign keys to the STATUS column on STATUS_CODE.
Finally, we added SUBMITTER columns to the GADGET, GADGET TYPE, and GADGET _FEATURE
tables, with foreign keys over to the USER_ID column in the USER table.

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

USER USER_ROLE_ASSN ROLE
USER_ID LONG < USER_ID LONG _‘—> ROLE_ID LONG
LOGIN VARCHAR(50) ROLE_ID LONG NAME VARCHAR(50)
PASSWORD | VARCHAR(20) DESCR VARCHAR(100)
NAME VARCHAR(100)
EMAIL VARCHAR(100)

GADGET GADGET_TYPE_ASSN GADGET_TYPE

i
GADGET_ID LONG > - GADGET_ID LONG =S LONG
NAME VARCHAR(50) TYPE_ID LONG LABEL VARGHAR(20)
DESCR VARCHAR(100) | DESCR VARGHAR(500)
STATUS LONG STATUS LONG
SUBMITTER | LONG L__1"SUBMITTER | LONG
GADGET_FEATURE_ASSN

GADGET_ID LONG GADGET_FEATURE

FEATURE_ID LONG »| FEATURE_ID LONG
LABEL VARCHAR(20)
STATUS_CODE DESCR VARCHAR(500)
STATUS LONG = STATUS LONG
SUBMITTER VARCHAR(100) SUBMITTER LONG

Figure 7-4. Updated Gadget Catalog data model

These changes to the data model have been reflected in the EJB 3.0 annotations on
the Gadget, GadgetType, and GadgetFeature classes in our application code, and a new
StatusCode EJB 3.0 entity bean has been created to represent the data in the new
STATUS_CODE table. We won't examine the details of these changes here, since they aren’t
salient to the current discussion, and you've already seen EJB 3.0 entity beans used
within our Seam application in earlier chapters.

In addition to these additions to the data model, we're also going to introduce a new
component, a GadgetReviewBean, which we’ll use for all the action methods required for
implementing the tasks in the gadget review process. The GadgetAdminBean will continue
to be used for general administrative tasks, but the details of the jBPM gadget review
process will live in the review bean.

As I discuss the details of implementing the gadget review process in the Gadget
Catalog, you can follow along in the example code that is provided with this book.

The code for this version of the Gadget Catalog can be found in the bpm directory of the
source code bundle.

169

170

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

Configuring jBPM in Seam

In order to make use of jBPM services within Seam, you need to configure the jBPM
engine. The first step in doing this is to install the org. jboss.seam.core.Jbpm component
in the Seam components.xml configuration file. You saw this same component in Chapter 5
when I discussed jBPM pageflow in Seam, because the same component is used to drive
both pageflow and business process management. The difference here is that, instead of
referencing some jPDL pageflow definitions using the pageflowDefinitions property, we
reference jPDL business process definitions using the processDefinitions property:

<components>

<!-- Install jPBM support -->
<component class="org.jboss.seam.core.Jbpm">
<property name="processDefinitions">
<value>editArticle.jpdl.xml</value>
</property>
</component>

</components>

The Seam jBPM component distinguishes between pageflow definitions and process
definitions because their descriptions use different variations on the jPDL format, and
their handling at runtime requires different services.

Once this element is added to our components.xml, the jJBPM engine will be initialized
when the application starts, and the referenced jPDL process definition file, editArticle.
jpdl.xml, will be looked up on the application classpath, parsed, and made available as a
business process. We can then start an instance of this process using an @CreateProcess
method, and perform tasks in the process using @StartTask, @BeginTask, and @EndTask
methods.

Well, almost. There are two other configuration files that you might need to worry
about, depending on the situation. One is the jBPM base configuration file, jbpm.cfg.xml.
This file is loaded by jBPM from the classpath and can be used to configure the various
services used by jBPM at runtime. The other configuration file is the Hibernate configu-
ration, hibernate.cfg.xml, which sets up the Hibernate persistence services.

As mentioned in the section “Integration of jBPM and Seam,” a jBPM business process
can live across application contexts, which means that the process state needs to be saved
in a database or similar persistent store. jJBPM uses its own database schema to store the
process definitions, process and task instances, and execution paths that are active at any
given point in a business process. So jBPM needs to have a way to connect to a database
that has this schema available.

By default, jJBPM makes use of Hibernate for its persistence operations. It doesn’t,
however, use EJB 3.0/JPA persistence like Seam and other Java EE environments. As

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

already mentioned, jBPM is intended for use in a broad range of Java environments,
including non-Java EE ones. So jBPM uses direct Hibernate calls to persist all of its
process state information. This means that the Hibernate services used by jBPM need
to be configured separately from the internal JPA configuration used by Seam, even if the
JPA engine is using Hibernate for its persistence operations.

I won't enumerate all the configuration options available in the jJBPM and Hibernate
configuration files. But I will mention a few common situations where you might need to
adjust these, and how.

Avoiding Conflicts with JBoss Transaction Management

Seam is used most commonly with the JBoss application server and its EJB 3.0/JPA
engine. By default, the JBoss JPA implementation is set up to manage transactions at
runtime. By default, the jBPM Hibernate configuration is also configured to manage
transactions at runtime. This will cause problems, as you can imagine, so you need to
disable one or the other in order to restore harmony. Since there are likely other services
in your JBoss environment that depend on its internal transaction management (like the
JPA engine, for example), it’s likely that you will want to disable the jBPM transaction
management.

Doing this is simple enough. You just need to set the isTransactionEnabled property
on the persistence services in jJBPM. These services are configured in the jbpm.cfg.xml
file. The following shows a jbpm.cfg.xml file that disables the persistent transaction
management:

<jbpm-configuration>
<jbpm-context>
<service name="persistence">
<factory>
<bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
<field name="isTransactionEnabled">
<false/>
</field>
</bean>
</factory>
</service>
<service name="message" factory="org.jbpm.msg.db.DbMessageServiceFactory" />
<service name="scheduler"
factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />
<service name="logging" factory="org.jbpm.logging.db.DbLoggingServiceFactory" />
<service name="authentication"
factory="org.jbpm.security.authentication.
DefaultAuthenticationServiceFactory" />
</jbpm-context>
</jbpm-configuration>

17

172

CHAPTER 7 ©" BUSINESS PROCESS MANAGEMENT

Notice that we've also included entries for the other jBPM required services, such
as the scheduler and logging services. That’s because when we put this configuration file
on the classpath of the application, it will override the default settings in jBPM. If we
didn’t include these default service implementations here, these services wouldn’'t work,
and jBPM would be crippled.

You can find these default settings in the default jbpm.cfg.xml file provided with the
jBPM download. There are also versions provided with a few of the Seam example appli-
cations. It's a good idea to make sure you're using the services that are required for the
version of jBPM being used by your Seam version, so starting with the files from the Seam
example applications is a good idea.

This configuration file needs to be available on the classpath of the application. Our
Gadget Catalog is packaged as an EAR file, with a web archive and EJB archive included.
To make the jBPM configuration file globally accessible in the application, we put it in
the root of our EAR file, as shown in Figure 7-5. We've also highlighted the location of our
customized hibernate.cfg.xml file, discussed in the next section.

j antlr-2.7.6_jar
& antlr-3.0ea8.jar

= commons-jci-core-1.0-406301.jar
3 commons-jci-janino-2.4.3.jar

j commaons-lang-2.1.jar

_> commons-logging-api-1.0.4.jar
3 drools-compiler-3.0.5.jar

3 drools-core-3.0.5.jar

= editArticle.jpdl.xml

2 el-api.jar

3 el_rij

= hibernate.cfg.xml
= Janino-Z.4.3 jar

«=z newGadget.jpdl.xml

<« newlser jpdl.xml

3 Practicalseam-BPM.jar
j PracticalSeam-BPM.war
reviewGadgets.jpdl.xml
stringtemplate-2.3b6 . jar

Figure 7-5. Contents of jBPM-enabled Gadget Catalog EAR file

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

Setting the Hibernate DataSource

Most applications (including our Gadget Catalog) make use of a database for persistent
storage. In some cases, it might be preferable to have jJBPM use the same database to
store all of its process state information. Maintaining multiple databases means more
complexity in the environment, and unless there are naming conflicts between the jBPM
internal schema and your application schema, putting them together in the same place
can simplify things. The jBPM package includes the ability to generate its internal data-
base schema for a variety of database engines. If you do integrate the jBPM tables with
your application database, you'll want to review the design of the tables to be sure there
aren’t any potential performance issues.

The database used by Hibernate is configured in its configuration file, so in order to
change the database to be the same as the application database, we will need to put a
hibernate.cfg.xml file of our own on the application’s classpath. But again, jBPM depends
on a number of default settings that it includes in its own internal hibernate.cfg.xml file.
These include all of the object-relational mappings for its internal data objects, which are
critical to making jBPM work properly.

The same approach can be taken here—take a sample hibernate.cfg.xml file from
either the jBPM distribution or the Seam example applications, and adjust it to suit your
application. The “dvdstore” example in Seam includes a hibernate.cfg.xml file that pro-
vides a good starting point, since it includes all of the jBPM data object mappings, and
it’s already set up to use a JNDI DataSource reference, which is typically how your applica-
tion’s database will be configured in your application.

For our Gadget Catalog application, we've configured our database to be accessible
through a DataSource referenced under the JNDI name “java:/PracticalSeam-BPM-db”.
The following section of the hibernate.cfg.xml file shows how we configured Hibernate
to use this same DataSource for its persistence operations:

<hibernate-configuration>
<session-factory>

<property name="hibernate.dialect">org.hibernate.dialect.HSQLDialect</property>

<property name="connection.datasource">java:/PracticalSeam-BPM-db</property>

<property name="transaction.factory class">
org.hibernate.transaction.JTATransactionFactory

</property>

<property name="transaction.manager lookup class">
org.hibernate.transaction.JBossTransactionManagerLookup

</property>

<property name="cache.provider class">
org.hibernate.cache.HashtableCacheProvider

</property>

173

174

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

<property name="hbm2ddl.auto">create-drop</property>

<!-- hql queries and type defs -->

<mapping resource="org/jbpm/db/hibernate.queries.hbm.xml" />

<!-- graph.def mapping files -->

<mapping resource="org/jbpm/graph/def/ProcessDefinition.hbm.xml"/>
<mapping resource="org/jbpm/graph/def/Node.hbm.xml"/>

</session-factory>
</hibernate-configuration>

You'll notice several other settings here that plug Hibernate into the JBoss environ-
ment. Again, unless you need to get into these details, it is easiest to start with a sample
configuration file and edit the bits that you require.

Another setting here that’s worth noting is the hbm2ddl.auto property. We've set it here
to the value create-drop. This setting tells Hibernate to automatically drop and then
(re-)create the tables defined in the Hibernate mappings when the application starts.
This setting is useful in a development environment, where keeping the mapped data
(jBPM process data, in this case) across application restarts isn’t necessary, and clearing
out the database is actually useful. In a production environment, you'd want to remove
this setting and create the jJBPM database tables through a separate process when
deploying the application for the first time.

We placed the hibernate.cfg.xml file in the root of our EAR file, as shown in Figure 7-5.
Aslong as Hibernate can read the configuration file from the runtime classpath, it should
take effect.

Defining Process Flows

Now that you've seen how to enable the basic jBPM services in our Seam application, we
can turn to the task of actually describing the business processes that we want jBPM to
manage for us.

It’s often useful to start with a graphical model of a process flow, such as the example
shown in Figure 7-1, since these type of flow charts clearly show the paths and decision
points that lead the process through the various tasks involved in the process. But the
process flow must eventually be turned into a machine-readable format, such as the
jPDL format shown in Listing 7-1, in order for the process to be managed and executed
in code.

In our case, we want to implement a business flow that starts when a new gadget is
entered into the catalog, and requires that the core gadget data, its assigned types, and
features are reviewed by one or more administrators. Once the review tasks are complete,

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

we want the original submitter of the gadget to either accept or reject the changes made
by the reviewers. If the changes are accepted, the gadget is officially confirmed, and the
business process ends. If the submitter disputes the changes made by the reviewers,

the review process is repeated from the start. Figure 7-6 shows a flow chart for the gadget
review process.

start-state

New gadget
entered

t} Admins Only

~

" [Review Review Review |
*._ \ core data types features . L

-

Verify * S Submitter Only

reject

revisions

accept
S
end

Figure 7-6. Gadget review process diagram

Notice that the process allows the three review tasks (core data, types, and features)
to happen in parallel. All three of these execution paths lead into a single join node, how-
ever, so all three must arrive at this node (i.e., all three of the review tasks must be
complete) before the overall process execution can continue. Once this happens, the
“verify revisions” task node is entered, causing the submitter of the gadget to be asked
to review the final form of the gadget.

Now we need to map this graphical model into jPDL so that jBPM can manage it
for us. Listing 7-2 shows a jPDL description of the gadget review process.

175

176 CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

Listing 7-2. jPDL Configuration of Gadget Review Process

<!-- jPDL for the gadget review business process. -->
<process-definition name="review-gadget">
<start-state>
<transition to="review-fork" />
</start-state>
<fork name="review-fork">
<transition name="core-review" to="review-core" />
<transition name="types-review" to="review-types" />
<transition name="features-review" to="review-features" />
</fork>
<task-node name="review-core">
<task name="review-core"
description="Review the core data for #{gadget.name}">
<assignment pooled-actors="ADMIN"/>
</task>
<transition to="review-join" />
</task-node>
<task-node name="review-types">
<task name="review-types"
description="Review the types assigned to #{gadget.name}">
<assignment pooled-actors="ADMIN"/>
</task>
<transition to="review-join" />
</task-node>
<task-node name="review-features">
<task name="review-features"
description="Review the features assigned to #{gadget.name}">
<assignment pooled-actors="ADMIN"/>
</task>
<transition to="review-join" />
</task-node>
<join name="review-join">
<transition to="verify-revisions" />
</join>
<task-node name="verify-revisions">
<task name="verify-revisions" description="Verify revisions made by admins">
<assignment actor-id="#{gadget.submitter.idStr}"/>
</task>
<transition name="reject" to="review-core"/>
<transition name="complete" to="end" />
</task-node>
<end-state name="end" />
</process-definition>

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

You can directly trace the execution of the process flow in Figure 7-6 in this jPDL def-
inition. The start node is represented with a start-state element. A start-state contains
a single transition, indicating where the process execution should go when the process
instance is created. In this case, our start node has a transition to the “review-fork” node.
The “review-fork” node is a fork, represented using a fork element. When a fork node is
encountered, each transition found in the node is triggered concurrently, creating a sepa-
rate execution path for each. In our case, we have three transitions in our fork, one to the
“review-core” node, one to the “review-types” node, and one to the “review-features”
node.

Each of these review nodes is a task node, represented using a task-node element.
When a task node is encountered in an execution path, the execution path waits until
the indicated task has been completed. When the task completes, one of the transitions
in the task node will be taken, depending on the outcome of the task. In our case, each
of our review tasks has a single, unnamed transition. This is a default transition that will
be taken regardless of the outcome of the task. In the next few sections, we’ll discuss the
details of how specifically a named task in a process is assigned to a user and then exe-
cuted by a user.

All of our review tasks transition to the “review-join” node, which is a join node rep-
resented with a join element. A join element waits until all transitions that lead to it are
followed. Once this happens, all of the inbound execution paths are joined into a single
execution path, and then the transition defined on the join node is followed. In our case,
the “review-join” node transitions to the “verify-revisions” node, which is another task
node. This task node has two possible transitions defined. If the “reject” transition is
taken, the execution goes back to the “review-fork” node, causing the three review tasks
to be activated again. If the “confirm” transition is taken, the process execution moves to
the “end” node, which is an end node represented by an end-state element. Once an end
node is entered by a process execution, the execution halts and the process instance
ends.

Starting a Business Process

As mentioned earlier in this chapter, Seam provides you with the @CreateProcess annota-
tion to make it easy to start jBPM processes at runtime. The @CreateProcess annotation
has a single attribute, “definition”, that you use to specify the name of the business
process you want to start. This name comes from the name attribute on the root process-
definition element in the jPDL file that describes the process.

In the Gadget Catalog, we want to kick off the gadget review process as soon as a user
saves a new gadget in the database. This operation is handled by the GadgetAdminBean.
saveGadget () action method, so all we need to do to start our process is add the
@CreateProcess annotation there:

177

178 CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

@End // End the pageflow/conversation when this completes
@CreateProcess(definition="review-gadget") // Start the review process
public String saveGadget() {

// The submitter is whoever is logged in when saving

// Our security configuration ensures the user had to be

// authenticated to save a gadget

getActiveGadget().setSubmitter(getUser());

saveGadget (getActiveGadget());

// Outject the new gadget into the business process

// about to be created, so the BPM tasks can pull it from the

// catalog

setReviewGadget (getActiveGadget());

return "success";

}

When this method completes successfully (no exceptions thrown, nonnull return
value), Seam will create a new business process context and ask jBPM to look up the
business process definition named “review-gadget” and create a new instance of it. The
“review-gadget” process is defined by the jPDL in Listing 7-2, which we included on the
classpath of our deployed application. At startup, jBPM loaded and parsed the jPDL into
an internal representation of the process. It now uses that to create a process instance
and takes the execution path to the start node. The start node has a single default transi-
tion to the “review-fork” node, which is our fork to start the three concurrent review
tasks. An execution path is created for each of the transitions in the “review-fork” node,
and each one hits a task node and then waits for that task to be done.

Business Process Data

As discussed at the start of this chapter and as depicted in Figure 7-2, jJBPM manages the
overall business process execution for you, and Seam exposes the business process exe-
cution in the form of a special context called the “business process context.” You can use
all the Seam bijection facilities we've been using to manage data in the other Seam con-
texts (session, conversation, etc.). You simply need to specify the appropriate scope

for the data using ScopeType.BUSINESS PROCESS. So if we wanted to inject a String value
from the business process context, we'd just do something like this:

@In(scope=ScopeType.BUSINESS PROCESS)
private String myString;

This will examine the business process context for an object named “myString” and
set the myString variable to its string value.

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

The key difference with the business process context, which will affect when and
how you put data into it, is the long-lived nature of business processes. As depicted in
Figure 7-2, a business process context can live across application boundaries. Some busi-
ness processes can take days, weeks, or months to complete, and your average
application server will probably need to be restarted during time intervals this long. That
means that a business process engine, like jBPM, needs to persist process-specific data
so that it can be restored when the application is revisited.

In order to persist process data, jBPM needs to know how the data is structured
and how to map it to database tables in the database that it’s configured to use. By
default, jBPM knows how to persist basic Java types, like Integer, Long, String, etc. But if
we want jBPM to persist some custom JavaBean that we've created, we need to tell jJBPM
how to do that. As discussed in the section “Configuring jBPM in Seam,” jBPM uses
Hibernate as its default persistence service, so we would need to set up a Hibernate
object-relational mapping for our JavaBean and add it to the hibernate.cfg.xml configu-
ration file for jJBPM.

This in itself isn't a terrible burden, but it does present a problem for a typical Seam
application that’s using EJB 3.0 to manage the persistence of its data. In our Gadget Cata-
log, for example, all of our persistent data is represented using EJB 3.0 entity beans.
Suppose we wanted to inject a Gadget object into the business process context and have it
persisted by jBPM. Well, as I just mentioned, we'd need to create a Hibernate mapping for
our Gadget bean and provide it to jBPM. But our Gadget bean is an EJB 3.0 entity bean, and
the EJB 3.0 engine in our Java EE server is managing its persistence. We could try to cob-
ble together a way for jBPM to persist our Gadget objects (and any other entity beans we
want to put into the process context), but this could be fairly risky, because we're concur-
rently running two persistence engines (our EJB 3.0 container and the Hibernate
runtime) against the same database tables, using the same Java objects. And even if we
could get this to work safely and reliably, we would be losing a lot of the ease-of-use
advantages of EJB 3.0. We're now forced to manually create object-relational mappings
for our data objects, in addition to defining the persistence annotations on the entity
bean, among other things.

There are some other options for persisting custom data structures in jJBPM. We
could create shadow JavaBeans that mirror the data in our entity beans, for example. This
avoids the risk of mixing two persistence engines with the same data, but we're still left
with doing redundant object-relational mappings, and we have to translate between the
data objects at runtime. Another option is to restrict ourselves to using basic Java types
for persistent process data, which can be messy if there are lots of key data elements that
need to be carried along with the process instance.

In the case of the Gadget Catalog, using basic Java types for persistent process data
seems to be the right approach. We need to know, at each stage of the process, the partic-
ular gadget that is being reviewed. A Gadget is uniquely identified in our database by its
identifier, so we can simply put the gadget identifier in the business process context as a
Long object. Whenever we need the full gadget, we can load it from the database using the
identifier.

179

180

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

We still want the convenience of having the Gadget object itself as a contextual com-
ponent, however, so that we can reference its various properties. In the jPDL for the
“review-gadget” process, for example, we use the gadget’s name and the identifier of the
submitter, using a “reviewGadget” component (see Listing 7-2). This seems pretty easy
to accomplish—we can use the gadget identifier from the process context to initialize a
Gadget, and then use bijection to put it into the current conversation context.

We still have one small hurdle, though. How do we transfer the gadget to be reviewed
into the business process in the first place? At first this seems simple enough: just outject
it from the gadgetAdmin component into the business process scope, and the gadgetReview
component can inject it and use it in its task conversations. We might set this up in the
GadgetAdminBean by creating an outjected variable:

@0ut(value="reviewGadget", scope=ScopeType.BUSINESS PROCESS, required=false)
private Gadget mReviewGadget;

Then, in the saveGadget() action method, we simply set this variable to the value of
the active gadget:

@End // End the pageflow/conversation when this completes
@CreateProcess(definition="review-gadget") // Start the review BPM
public String saveGadget() {

getActiveGadget().setSubmitter(getUser());

saveGadget (getActiveGadget());

mReviewGadget = getActiveGadget();

return "success";

}

There’s a problem with this, though. The gadgetAdmin component is used in several
different pages and user conversations, and every time it is invoked, the outjection we
just set up will take place. The mReviewGadget variable will be null most of the time, and
the outjection will be putting an invalid value into the business process context. For
these reasons, instead of using outjection, we simply make direct access to the business
process context from the saveGadget () method, placing the gadget to be reviewed into the
business process that is started by the @CreateProcess annotation:

@End // End the pageflow/conversation when this completes
@CreateProcess(definition="review-gadget") // Start the review BPM
public String saveGadget() {
getActiveGadget().setSubmitter(getUser());
saveGadget (getActiveGadget());
Contexts.getBusinessProcessContext().set("reviewGadget", getActiveGadget());
return "success";

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

This is somewhat un-Seam-ly? in that we are programmatically manipulating the
context data. But in this case, it’s an effective way to make a bridge between the conversa-
tional context and the persistent process context.

As I mentioned when I provided an overview of the object model changes in the Gad-
get Catalog, the actions and data needed to implement the review process will be the
responsibility of a new component, implemented by the GadgetReviewBean class. In the
GadgetReviewBean, we need to initialize our gadget identifier as a process identifier, and
keep the gadget being reviewed as a conversational variable. First we create two bijected
variables on the GadgetReviewBean:

@In(value="reviewGadget",
required=false)

@0ut(value="reviewGadget",
required=false)

private Gadget mReviewGadget;

@In(value="reviewGadgetID",
scope=ScopeType.BUSINESS PROCESS,
required=false)

@0ut(value="reviewGadgetID",

scope=ScopeType.BUSINESS PROCESS,
required=false)

private Long mReviewGadgetID;

The reviewGadget component represents our gadget being reviewed, and the
reviewGadgetID is its identifier, kept in the process context. Notice that we've left the scope
unspecified on the @In and @0ut annotations for the reviewGadget. When we inject the value
for the first time, it will be pulled from the process context where the gadgetAdmin compo-
nent placed it in saveGadget (). We've left the gadgetReview component as a conversational
component, so the outjection will be to the conversation context by default.

The final piece of the puzzle is to put some code in place to initialize the reviewGadget
component and/or the gadget identifier, depending on the situation. When the first task
is performed in a process instance, there will be a reviewGadget component initialized by
the gadgetAdmin.saveGadget() action. But there won't be a gadget identifier, because we
haven't injected it into the process context yet. In other cases (e.g., across application
restarts), we'll have the gadget identifier in persistent process scope, but no reviewGadget.
So we check for both situations in our task method(s):

@StartTask

public String startReviewTask() {
// If the review gadget ID is unset, we must be starting the process,
// so pull the review gadget placed in the process context by the

2. Please, please pardon the pun, but I had to use it at least once.

181

182 CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

}

// gadgetAdmin component, and initialize the id
if (mReviewGadgetID == null) {
if (getReviewGadget() == null) {
facesMessages.add(
new FacesMessage(FacesMessage.SEVERITY ERROR,
"Invalid process data",
"There is no active review gadget or gadget ID"));
return null;

}
else {

mReviewGadgetID = getReviewGadget().getId();
}

}
// 1f necessary, load the gadget being reviewed from the catalog DB,
// and place it into conversation scope
if (getReviewGadget() == null) {
String queryStr = "from Gadget g where g.id = " +
mReviewGadgetID;
Gadget rg =
(Gadget)gadgetDatabase.createQuery(queryStr).getSingleResult();
setReviewGadget(rg);

return getTask().getName();

This can all get confusing very easily, so let’s review the steps in the process from the

start:

1. A user saves a new gadget using the gadgetAdmin.saveGadget() action method.

2. Anew process instance is created because of the @CreateProcess annotation on the

method.

The saved Gadget object is programmatically placed into the process context
under the component name “reviewGadget”, and saveGadget () returns success-
fully.

Later, a user decides to perform one of the review tasks (how this happens is the
topic of the next section). The appropriate action method on GadgetReviewBean is
invoked. The reviewGadget component is injected from the process context, and
the action method initializes the gadget ID variable from the reviewGadget.id
property. The identifier is outjected into the process context.

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

5. As future tasks are executed in the business process, the same check is performed
each time. The gadget ID is always available, since it resides in the persistent
process scope, so the reviewGadget can always be reloaded from the database
using that.

Executing Tasks

During the execution of a process, if a task-node is encountered (such as the “review-
core” node in our gadget review process), jJBPM will create an instance of the task
configured in the node, and then the execution path will wait for that task to be com-
pleted. Every task instance has a task ID associated with it. A task is completed when
the task instance with that ID is marked as complete.

I'll focus here on executing process tasks through the Seam framework, using Seam
annotations and built-in components. If you are writing a Seam application, you want to
handle business processes the same way you handle other concerns. If you'd prefer, you
can directly access the current process and task instances being managed by jBPM, using
the jBPM API, but we won't explore this approach here. For full details on programmatic
business process management using jBPM’s direct APIs, refer to the jJBPM documentation.

Assigning Tasks to Users

A user can only execute a task once it has been assigned to him or her. Tasks can be
assigned to users in two ways: a task can be assigned directly to an individual user, or
it can be assigned to a role held by the user.

Tasks are initially assigned to users (either individually or by role) in the process defi-
nition. Looking back to Listing 7-2, you can see that each task element in each task node
has an assignment element that specifies who is supposed to perform the task. Here’s the
task node for the “review-core” task, for example:

<task-node name="review-core">
<task name="review-core"
description="Review the core data for #{reviewTaskGadget.name}">
<assignment pooled-actors="ADMIN"/>
</task>
<transition to="review-join" />
</task-node>

Here we're saying that any user with the role of “ADMIN” can perform this task. The
attribute we're using on the assignment is called “pooled-actors” because this type of task
assignment puts the task into a pooled list of tasks, assigned to anyone with the “ADMIN”
role.

183

184 CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

You can also assign a task to an individual user. In the “verify-revisions” task, for
example, we're assigning the task to the user who submitted the original gadget to the
catalog.

<task-node name="verify-revisions">
<task name="verify-revisions" description="Verify revisions made by admins">
<assignment actor-id="#{submitterID}"/>
</task>
<transition name="reject" to="review-core"/>
<transition name="confirm" to="end" />
</task-node>

We use the actor-id attribute on the assignment in this case. We're using a context
variable called submitterID as the actor-id value—the initialization of this context vari-
able was discussed in the section “Business Process Data” earlier in this chapter.

How does jBPM identify users and their roles? Every user participating in a jJBPM
process is associated with an actor ID, and with one or more named roles. Seam provides
a built-in component called actor, implemented by the Actor class, that wraps these user
attributes into a Seam context variable and makes them available to the jBPM runtime
when needed. In Chapter 6, we integrated Seam’s security services into the Gadget
Catalog to authenticate users and associate their roles with them. We keep the user’s
authenticated identity and roles in our User object, and that object is created during
authentication when the Login.login() action method is invoked. All we need to do in
order to plug these two things together is to ensure that, whenever a user’s User object is
created, the information is also used to populate their actor component. This is very sim-
ple to implement: we just need to inject the actor component into the Login bean, and
when the user authenticates and invokes the Login.login() method, we map over the
user’s identifier and roles to the appropriate properties on the actor component.

Listing 7-3 shows the modified Login bean, with the relevant changes highlighted.

Listing 7-3. Login Bean, Modified to Initialize the jBPM Actor

@Stateful

@Name("login")

public class Login implements ILogin, Serializable {
@In(value="user", required=false)
@0ut(value="user", required=false)
private User mUser;

@In(create=true)
private EntityManager gadgetDatabase;

// Inject the jBPM Actor component
@In(value="actor")

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

private Actor actor;

public boolean login() {
boolean result = false;
if (getUser() == null) {

try {
Identity identity = Identity.instance();
String queryStr = "from User " +
"where login = :userName " +
"and password = :password"
Query q =

gadgetDatabase.createQuery(queryStr)
.setParameter("userName", identity.getUsername())
.setParameter("password", identity.getPassword());
setUser((User) g.getSingleResult());
if (getUser() != null) {
// Map the user over to the jBPM actor
actor.setId(Long.toString(getUser().getId()));

// Register the user's roles with the Seam security system,

// and with the jBPM actor

for (Role r : getUser().getRoles()) {
identity.addRole(r.getName());
actor.getGroupActorIds().add(r.getName());

}

}
catch (NoResultException nre) {

FacesMessages.instance().add("Username/password do not match");
}

}
result = (getUser() == null ? false : true);
return result;

@Destroy @Remove
public void destroy() {}

public User getUser() {
return mUser;

}

public void setUser(User user) {
mUser = user;

}

185

186

CHAPTER 7 = BUSINESS PROCESS MANAGEMENT

Once jBPM knows who the user is and what groups he or she is in (which is accom-
plished by initializing the user’s actor component), it keeps track of all the pending tasks
that are waiting for that user, in any active business process instances. jBPM keeps an
internal record of these task assignments, and Seam exposes them as the following
components:

e taskInstancelist: This is a list of all pending tasks that have been directly assigned
to the current user. In other words, this list has all the tasks whose actor ID
matches the actor ID in the current user’s actor component.

¢ pooledTaskInstancelist: This is a list of all pending tasks that have been assigned to
one or more of the current user’s groups. If a task is assigned to a particular group,
all users with that group in their actor.groupActorIds list will see that task appear in
their pooledTaskInstancelist context variable.

¢ taskInstancelistForType: This context variable allows you to select tasks from the
user’s current list, based on type (i.e., the name of the task, as specified in the name
attribute in the task element in the jPDL process definition).

To demonstrate the use of these components, let’s enhance the Gadget Catalog to
allow administrators to pick review tasks to perform when new gadgets are entered
into the catalog. As you already saw in the section “Starting a Business Process,” the
gadgetAdmin.saveGadget () action method has been enhanced with an @CreateProcess
annotation, causing an instance of the “review-gadget” process to start when a gadget is
saved. As you can see in Figure 7-6 and Listing 7-2, the start node in the process immedi-
ately transitions to the “review-fork” node, and that in turn branches to the three review
tasks. These tasks are each assigned to any actor in the “ADMIN” group. Our enhance-
ments to the Login component have ensured that all Gadget Catalog administrators will
also fall into this jBPM group, so once these task nodes are entered, the three review tasks
will be placed into the pooledTaskInstancelist for any administrator.

Making available tasks visible to our administrators (or any users, for that matter)
is simply a matter of referencing these components in a page. These lists all contain
TaskInstance objects, which is how jBPM represents a task instance during the execution
of a process. A TaskInstance has many properties available, but a few of the more com-
monly used ones are listed here:

¢ name: The task name, as specified in the name attribute of the task element in the
jPDL

* description: The task description, as specified in the description attribute of the
task element

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

¢ id: The unique task ID assigned to this task instance by the jJBPM runtime

e actorId: The ID of the actor currently assigned to this task (if any)

It’s a simple matter to add a JSF dataTable to the adninHome.jsp page, listing out any
pooled tasks that the administrator can choose to perform:

<h:dataTable rendered="#{not empty pooledTaskInstancelist}"
value="#{pooledTaskInstanceList}" var="task">
<h:column>
<f:facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{pooledTask.assignToCurrentActor}"
value="Accept" taskInstance="#{task}"/>
</h:column>
</h:dataTable>

The only new details we've introduced here are the use of the pooledTask component
and the use of the taskInstance attribute on the Seam s:1ink control. The pooledTask
component is another built-in Seam component that is enabled when you enable jBPM
support in your application. This component is used to assign tasks to users. When you
invoke the assignToCurrentActor action method, it assigns the task to the current actor.
The actor ID is accessed from the currently active actor component. The task is refer-
enced on the link using its task ID. In this case, we're using the taskInstance attribute on
s:1link, which is a shortcut to adding the task ID to the request. If you were using a regular
JSF commandLink control instead, you would have to pass in a taskId parameter using the
id property of the task:

<h:commandLink action="#{pooledTask.assignToCurrentActor}" value="Accept">
<f:param name="taskId" value="#{task.id}"/>
</h:commandLink>

Now, when any user saves a gadget to the catalog (using the newly annotated
saveGadget () action method), the “review-gadget” process kicks off, and the execution
paths land eventually on the three review tasks. Each of these is assigned to the “ADMIN”
group and will appear in any administrator’s list of pooled tasks. So when an administra-
tor goes to the administration home page, he or she will now see the screen in Figure 7-7,
assuming that the new gadget was named “Solar Plexus 2000”.

187

188

CHAPTER 7 ©" BUSINESS PROCESS MANAGEMENT

Gadget Catalog Admin: Administration
Home

Tasks you can accept:

Description
Review the types assigned to Solar Plexus 2000
Review the core data for Solar Plexus 2000 /
Review the features assigned to Solar Plexus 2000 /

Figure 7-7. Admin home page showing available tasks

When an administrator clicks one of the “Accept” links, the task is put into his or her
list of assigned tasks, and it will then appear in his or her taskInstancelist.

Starting and Ending Tasks

You've seen how tasks can be assigned to a user, now let’s see how a user actually per-
forms a task. In Seam, a task is started when the user executes an action with an
@StartTask annotation, with the task ID included as a request parameter. So we can easily
create a link to start a task in essentially the same way that we created the table of pooled
tasks in the previous section.

Once a user has been assigned to a task, the task will appear in that user’s
taskInstancelist component. We can place a table of task links on the Gadget Catalog
home page by adding the following dataTable control to the index. jsp file:

<h:dataTable rendered="#{identity.loggedIn and not empty taskInstancelist}"
value="#{taskInstancelList}"
var="task">
<h:column>
<f:facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{gadgetReview.startReviewTask}"
value="Begin" taskInstance="#{task}"/>
</h:column>
</h:dataTable>

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

Except for the fact that we're using the taskInstancelist instead of the pooled
TaskInstancelist, there’s very little different between this table and the one you saw
earlier. One difference is that, since we're placing this table on the main home page, and
since that page does not require authentication, we need to check to see whether the user
is logged in before we render the table. If a user is not authenticated, checking his or her
taskInstancelist isn't possible, because we don't know who that user is.

The other difference in the links is that, instead of using the pooledTask component
to assign tasks to users, we're pointing the links to an action method, startReviewTask(),
on our gadgetReview component. This task is annotated with an @StartTask annotation,
so when the user follows this link, a new conversation will be started, and the task whose
taskId is passed in the request will be started in the corresponding business process
instance:

@StartTask

public String startReviewTask() {
// Details of initializing process data omitted here
return getTask().getName();

}

We looked at this action method earlier in the section “Business Process Data,” where
we looked at the handling of business process variables. I've omitted the data initializa-
tion details here for brevity. But there is another interesting practical detail to mention
here. You may have noticed that all of the links we generate in the home page point to the
same action method, regardless of the type of task the user is executing. This seems odd,
since we obviously need to perform different actions depending on what task is being
performed, right? Well, we're using JSF navigation rules to route the user to the page that’s
relevant to the task being performed. You'll notice in the method implementation that
the outcome of the method is the name of the task being performed. We injected the cur-
rent task into the gadgetReview bean as the value of its task property:

@In(value="taskInstance")

private TaskInstance mTask;

public TaskInstance getTask() {
return mTask;

}
public void setTask(TaskInstance task) {
mTask = task;

}

In the @In annotation, we're referencing the built-in taskInstance component pro-
vided by Seam. This represents the current task being performed by the user, if he or she
is running within a conversation with an active task.

In order to route the user to the right page, we then added the following navigation
rules to the faces-config.xml:

189

190 CHAPTER 7 ©" BUSINESS PROCESS MANAGEMENT

<navigation-rule>
<navigation-case>
<from-outcome>review-core</from-outcome>
<to-view-id>/admin/reviewGadgetCore.jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>review-types</from-outcome>
<to-view-id>/admin/reviewGadgetTypes.jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>review-features</from-outcome>
<to-view-id>/admin/reviewGadgetFeatures.jsp</to-view-id>
</navigation-case>
</navigation-rule>

This creates a handy little task-routing entry point—a single action method,
startReviewTask(), can be used for starting all tasks in the “review-gadget” process, and
we just make the appropriate entry in faces-config.xml to associate the appropriate page
with the task to be performed.

So far, so good—we've started the process, assigned tasks to users, and users can
start these tasks. But we still need to make sure that jJBPM knows when these tasks are
complete. Seam has made this a simple matter as well. As an example, let’s look at the
“review-core” task. In the navigation rules earlier, note that the user will be routed to the
/admin/reviewGadgetCore.jsp page when he or she starts this task. That page displays a
form that allows the administrator to review/change the core metadata for the gadget,
and also to set the status for the gadget as a whole (e.g., from “UNCONFIRMED” to
“CONFIRMED”, etc.), as shown in Figure 7-8.

Gadget Catalog Admin: Edit Gadget
‘Solar Plexus 2000°

Reviewing core data for gadget "Solar Plexus 2000"

Name: Solar Plexus 2000 |

Description: | wonderful solar device |

Types: No types assigned
Features: No types assigned
LS TEHE CONFIRMED

| Finished |

Figure 7-8. Core gadget data review form

CHAPTER 7 " BUSINESS PROCESS MANAGEMENT

This form submits to the gadgetReview.saveCoreReviewData() action method:

<h:commandButton type="submit" value="Finished"
action="#{gadgetReview.saveCoreReviewData}"/>

This action method has an @EndTask annotation, ensuring that, if it completes suc-
cessfully, the currently active task (associated with the current conversation context) will
be ended:

@EndTask

public String saveCoreReviewData() {
saveGadget (getReviewGadget());
return "success";

}

The ending of the task triggers jBPM to update the process execution path that is
waiting on this task, advancing it to the “review-join” node (as specified in our jPDL in
Listing 7-2). Once all of the review tasks that transition to this join node are complete,
the join will execute, and the transition to the “verify-revisions” task node will occur.
Since this task is assigned directly to the user who submitted the new gadget, it will
immediately be placed in that user’s taskInstancelist, and the task will appear as a link
in the home page the next time he or she visits it. Once the user completes that task, the
process will either end or loop back to the review fork, depending on the outcome of
the verification task.

Summary

In this chapter, we've explored Seam’s support for business process management, using
the jBPM framework. Seam’s integrated jBPM support simplifies the use of business
processes in your applications. Processes and their tasks can be started and ended using
annotations on action methods, and Seam exposes the process runtime as a Seam com-
ponent context, allowing you to use all the contextual component facilities of Seam in
your process.

I also discussed some of the special issues involved in managing business processes,
since they are very long-lived contexts that can span multiple user sessions and multiple
application lifetimes. This long-lived characteristic of business processes requires per-
sistence of key process variables, and this persistence must be considered when using
components in the process context. You saw some how these persistence needs impacted
our use of business processes in the Gadget Catalog. We needed to implement some spe-
cial handling of context components, depending on whether they could be persisted by
jBPM or not.

191

CHAPTER 8

Rich Web Clients

The term “rich web clients” is typically interspersed with the terms “Web 2.0” and
“AJAX.” It refers to web interfaces that provide a relatively high level of interactivity
compared to traditional click-and-reload web interfaces. These rich web interfaces are
thought of as the next generation of user experience on the Web (hence the association
with Web 2.0), and the technology most often brought to bear to create them is JavaScript
(hence the association with Asynchronous JavaScript and XML, or AJAX).

In this chapter, we will explore Seam’s support for integrating rich web clients with
your Seam components, using these components to provide the server-side data and
functionality needed for the web interface. The key factor here is that the data and func-
tionality is accessed directly from the web client (the browser) rather than through the
standard JSF web request processing life cycle. This enables more immediate and inter-
active user experiences in the web interface, among other things.

Much of the discussion in this chapter involves JavaScript and dynamic DOM manip-
ulation, which are typical parts of any AJAX interface. I am not going to provide a tutorial
on JavaScript here. If you are not already familiar with the basics of JavaScript and access-
ing the page DOM at runtime, you might want to defer reading this chapter and instead
get familiar with these foundations first.

What Is a Rich Web Client?

Typical web interfaces are like the ones you've seen so far in this book. The user navigates
through a series of pages to accomplish tasks, like creating entries in catalogs, searching
for information, and so on. The interaction paradigm is very simple: a page is presented
to the user, the user edits fields and/or clicks a link or a button on the page, and he or she
is taken to another page. In between the two page views, the client browser sends an
HTTP request to the site, and this request can cause information to be updated, data to
be retrieved, and so forth. This sequence (view a page, perform an action on that page,
and be redirected to another page) continues until the user is done with whatever he or
she is doing.

This mode of interaction leaves a lot of room for improvement. It doesn't feel very

interactive to users, for obvious reasons. User interactions are broken down into relatively 103

194

CHAPTER 8 = RICH WEB CLIENTS

coarse transactions, delimited by pages and browser redirects. Users experience

a “read/edit/wait” sequence, where they are presented with a page, they have to visually
parse what’s on the page and what'’s being asked of them, decide what action they want to
take, take it, and then wait for the browser to load up the next page.

Arich web client implements a more interactive experience for the user. Transactions
with the system are broken down into smaller units of work, and users see more immedi-
ate feedback from their actions (more immediate than a full browser page load, at least).
Arich web client allows a user to push a button and see the impact immediately in the
page that he or she is viewing. There’s no disorienting context switch to a new page, and
the user feels more effective and more efficient.

The most commonly used technology currently for implementing rich web clients is
AJAX. AJAX is more of a technique than a specific API or tool. It involves the use of
JavaScript to make “intrapage” requests back to a web server to perform actions on the
user’s behalf. The JavaScript is loaded in the page along with the HTML used to display
the contents, and as the user interacts with the HTML elements (clicks buttons, types
into text fields, etc.), JavaScript calls are made in response to the user’s actions in the
page. These calls can, among other things, exchange XML information with some server-
side component, such as a CGI script, a Java servlet, or any active code. This exchange
might bring additional information into the page, update server-side data, or just about
anything else that’s needed to accomplish what the user is trying to do. Again, the differ-
ence is that these server calls are made without a full page request being made by the
web browser, so a user sees more immediate feedback to his or her actions in the page.

Seam’s Remoting Services

Seam’s primary support for rich web clients is provided in its component remoting serv-
ices. These services will dynamically (and automatically) generate JavaScript client stubs
for your Seam components and use them from a web browser client to interact directly
with your server-side Seam components.

Figure 8-1 shows the runtime model used by the Seam remoting services, and the
interaction that they enable between your Seam components and client-side JavaScript
code.

At the bottom of the figure is your Seam application running in an application server.
At the top is the client browser. The Seam remoting services consist of a set of Java code
running on the server and another set of JavaScript code running in the browser. The
server-side code generates a JavaScript binding for any Seam components that you
choose to export. This JavaScript code runs in the browser and can be used to make
direct calls back to the Seam components. Seam’s remoting services handle all of the
communication between the browser and the Seam components. This support code
converts JavaScript calls made in the browser to XML and back again. Similarly, the Seam
remoting services running on the server convert the XML coming from the browser into

CHAPTER 8 " RICH WEB CLIENTS

appropriate calls to your Seam components, and the results are converted into XML and
streamed back to the browser. On the server, you write Seam components in Java as
usual, and on the client, you invoke those components using regular JavaScript calls.

All the ugly details of the XML communications and the creation of JavaScript interfaces
for the components are done for you by Seam’s remoting services.

)

User Events
'd N N
Browser (Client) l

HTML Document

Component A Component B Component C
(JavaScript) (JavaScript) (JavaScript)

Seam Client-Side Remoting Services
(JavaScript)

I
Asynchronous
XML

Seam Server-Side Remoting Services

(Java)
Seam Seam Seam
Component Component Component
A B C

Seam Application (Server)

Figure 8-1. Seam remoting runtime

The Seam remoting services are ideally suited to help with creating rich web clients
using AJAX. The JavaScript interfaces for your Seam components allow you to call them
directly from the browser, triggered by user events within the HTML page. Information
provided by the Seam components can be displayed immediately to the user within the
page, without requiring a page reload.

195

196

CHAPTER 8 = RICH WEB CLIENTS

Gadget Catalog: Improving the User Experience

The user experience in the Gadget Catalog has been improving slightly as we've pro-
gressed. The use of Seam’s pageflow capabilities in Chapter 5 allowed us to provide
wizards to simplify the creation of new gadget entries, for example. But now that we've
opened up the application for general users, we need to consider ways to integrate rich
client technology into the interface to make it more interactive and appealing to users.

One way we could improve things is to streamline the search features of the catalog.
Currently, a user (either a general public user using the main home page or an adminis-
trator using the administrator home page) has to type in some search text and browse
through the list of results to find the gadget he or she is seeking. It would be much more
efficient to show candidate matches to the user while he or she types, allowing that user
to pick the one he or she is after directly from the search page. In the world of AJAX this is
commonly referred to as an auto-complete feature, and many AJAX JavaScript libraries
provide auto-complete tools.

There are many other rich client extensions we could make to the Gadget Catalog
interface as well, but this simple enhancement to the search function will allow us to
demonstrate the key features of Seam remoting.

Configuring Seam Remoting

As with all the other Seam services, you need to configure the remoting services before
you can use them. Since Seam remoting involves both server-side and client-side ele-
ments, you need to do server-side and client-side configuration. Luckily, both ends of the
configuration are very straightforward.

Server-Side Configuration

The implementation and support classes for the Seam remoting services are in the
jboss-seam-remoting.jar library, so this jar file needs to be included in your application
archive. You can add it to the WEB-INF/1ib directory of your web archive, or put it into your
application archive (the EAR) and load it as a jar module in the application.xml. As with
any other libraries, make sure you only load it in one place in your overall application
archive, to avoid classloader issues.

If you want to configure any of the behavior of the remoting services, you can add an
entry to your components.xml file:

<components>
<component name="org.jboss.seam.remoting.remoting">
<property name="debug">true</property>

</component>

</components>

CHAPTER 8 " RICH WEB CLIENTS

In the current version of Seam, the only property you can configure on the remoting
service is the debug option.! I'll describe this option a little later when I discuss the
client-side JavaScript code in the section “Debugging Remote Calls.”

The last piece of server-side configuration is the most important. The heart of the
server-side remoting services is the Resource Servlet. This is a general-purpose servlet
provided with Seam that you can include in your web application. It provides HTTP
access to various runtime resources that might be needed by Seam components, client-
side code, and so on. The Seam GraphicImage JSF control, for example, uses the Resource
Servlet to pull a dynamic image resource to display in the page.

Seam’s remoting services make use of the Resource Servlet in several ways. First, it
provides access to all the JavaScript needed within the web page, including both the base
JavaScript library needed to communicate with the Seam application and the automati-
cally generated JavaScript interfaces to your Seam components. The Resource Servlet
also provides the JavaScript code with runtime access to the Seam components. The
JavaScript client stubs pass their XML messages to the Seam remoting services through
the Resource Servlet.

Configuring the Resource Servlet is done like any other servlet. You need to add
servlet and servlet-mapping entries to your web.xml to activate the servlet:

<web-app>
<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>

<url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

</web-app>

You should use this servlet mapping as-is, because there are elements of the Seam
services that depend on this particular URL pattern.

Client-Side Configuration

Once the Seam remoting services are configured in your application, you can configure
the client-side of the remoting connection. In each web page where you want to make
use of Seam components, you'll need to import the Seam remoting base JavaScript

1. The Seam remoting services also include an experimental release of support for accessing JMS mes-
sage destinations from client-side JavaScript, along with a set of configuration properties for these
features. At the time of this writing, these are still only experimental, so I don’t discuss them here.

197

198

CHAPTER 8 = RICH WEB CLIENTS

library in the page using an HTML script tag. The JavaScript library is accessed through
the Resource Servlet, using the URL seam/resource/remoting/resource/remote. js within
your application’s web context. So if your page sits in the root of your web archive, you

would import the remoting JavaScript library like so:

<script type="text/javascript"”
src="seam/resource/remoting/resource/remote.js"></script>

Like any other JavaScript library, you can import the code in the head or the body of
your page.

If your Seam component is a session EJB, requiring an “executable” stub (see the next
section, “Enabling Access to Server Components”), you'll need to load the JavaScript
client stubs for the component through the Resource Servlet as well. If you have a session
EJB Seam component named “widget”, for example, you would import the JavaScript
bindings for that component using the following script tag:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?widget"></script>

Now that you've seen how to configure the server-side and client-side of the remot-
ing link, let’s look at how you enable your Seam components to be remotely accessed.

Enabling Access to Server Components

Seam allows you to remotely access any of your components and other Java types from
the web client. Native Java types, and some Java collections, are mapped directly into
corresponding JavaScript types, as described in the next section, “Basic Java Type
Mappings.” Any JavaBeans or EJB components that you want to access will be mapped
to client-side JavaScript stubs.

There are two types of client stubs that Seam generates for your Java objects:
executable stubs and type stubs. Executable stubs are used to expose key business func-
tionality to your web client, while fype stubs are used to represent various data types
employed as method arguments and return values.

Basic Java Type Mappings

Table 8-1 lists the mappings that Seam remoting uses for basic Java types, such as native
types, built-in classes, and so on. JavaScript is a more loosely typed language than Java,
so in some cases it may be possible to force a mapped type into another when needed.

CHAPTER 8 " RICH WEB CLIENTS

Table 8-1. JavaScript Mappings for Basic Java Types

Java Type JavaScript Mapping
java.lang.Boolean Boolean
java.util.Date, java.sql.Date, Date

java.sql.Timestamp

enum Enumerated values will be represented as String values in
JavaScript. To pass enum values back to the server, you
need to use their names as strings.

java.lang.Number The number value will be serialized into a string in the
XML passed between the client and server, and on the
client it will be mapped to an appropriate JavaScript

number value.
java.lang.String String
java.util.Array, List, Set, Any Java collections that fall under these types will be
Queue collections mapped to JavaScript arrays.
java.util.Map Any Java Map collections will be mapped to

Seam.Remoting.Map objects. JavaScript does not contain
native support for maps, so Seam’s remoting services
provide their own implementation of a JavaScript map.
The definition of this JavaScript object is part of the base
JavaScript code in the remote. js script, loaded through
the Resource Servlet.

Executable Stubs

Executable stubs are generated for Seam components that are session EJBs, or JavaBeans
that contain methods annotated with @WebRemote. If neither of these conditions apply, the
component will have a type stub generated for it instead.

When an executable stub is generated, it will only contain bindings for the methods
that have been annotated with the @WebRemote annotation. The @WebRemote annotation can
be used without any attributes, or an exclude attribute can be used to filter the data flow-
ing from the component to the client. I'll discuss the exclude attribute later in the section
“Restricting the Client-Side Data,” when we look at how the XML data flowing to the
client can be managed.

Listing 8-1 shows an example JavaBean component, PurchaseOrder, that has several
methods used for accessing and updating information about a purchase order.

199

200

CHAPTER 8 = RICH WEB CLIENTS

Listing 8-1. Example JavaBean Annotated for Remote Access

@Name ("purchaseOrder")
public class PurchaseOrder implements Serializable {

@WebMethod

public List<LineItem> getLineItems() { . . . }
@WebMethod

public boolean validateOrder() { . . . }
public Status getOrderStatus() { . . . }
public boolean addItem(LineItem 1) { . . . }

Two methods have been annotated for remote access: getLineItems() and
validateOrder (). When a client imports the JavaScript bindings for this component, the
executable stub interface for PurchaseOrder will contain functions corresponding to these
two methods.

In the case of our Gadget Catalog enhancements, we want to remotely access the
gadget searching functionality from the home page. This will allow us to take the user’s
text from the search box as he or she is typing, perform a search, and show some sugges-
tions that might help the user get right to the gadget he or she is after. If the user wants,
he or she can still do the full search and browse through the results on the gadget list
page, but the suggested matches will give the user some immediate feedback and give
him or her the option to take a shortcut right to a specific gadget.

The search functionality in the Gadget Catalog is provided by the GadgetAdminBean
component. This component is a session EJB, and when annotating methods on a ses-
sion EJB for remote access, they must be marked in the bean’s local interface. This may
sound nonintuitive at first, but it actually makes sense when you think about how EJB
components are managed and how Seam’s remoting services operate. When you deploy
a session EJB to the EJB container, it will take any local (annotated with the EJB
@Local annotation) or remote (annotated with the EJB @Remote annotation) interfaces and
generate internal proxies for them. These proxies interact with the E]JB container’s inter-
nal runtime services to ensure the component is managed properly at runtime. Seam’s
remoting services operate as a client to these EJB components, so its annotations need to
be applied to the EJB’s interfaces, not its implementation class. In addition, since the
Seam remoting services will be running on the server with the EJB components, the local
interfaces for the EJB should be used.

Luckily, GadgetAdminBean already has a local interface defined, the IGadgetAdminBean
interface. On examination of the IGadgetAdminBean interface, however, we see that the
search method defined there isn't structured in a way that’s convenient for our client
calls. The search() method is an action method, taking no arguments and returning an
outcome as a String. The search text is pulled from the searchField property, and the
property value is populated by a JSF form. For our remoting use case, we need a search

CHAPTER 8 " RICH WEB CLIENTS

method that accepts the search text directly and returns the matching Gadget beans. So
we'll refactor our search() action method into two search() methods:

public String search() {
mGadgetMatches = search(getSearchField());
mSelGadget = null;
if (mGadgetMatches.size() == 1) {
setActiveGadget (mGadgetMatches.get(0));
return "editGadget";
}

return "listGadgets";

public List<Gadget> search(String str) {
List<Gadget> results = new Arraylist<Gadget>();
String searchField = "%" + str + "%";
try {
String queryStr =
"select g from Gadget as g " +
"where UPPER(g.name) like UPPER(:searchField) " +
"or UPPER(g.description) like UPPER(:searchField) " +
"order by g.name"
Query q = gadgetDatabase.createQuery(queryStr)
.setParameter("searchField", searchField);
results = g.getResultlList();
}
catch (Exception e) {
e.printStackTrace();
}

return results;

}

We have to add a declaration for our new search() method in the IGadgetAdminBean
interface and annotate it for remote access as well:

@Local

public interface IGadgetAdminBean {
@WebRemote
public List<Gadget> search(String str);

In order to use an executable stub in the browser, you have to explicitly load the
executable stub through the Seam Resource Servlet, similar to how we loaded the base

201

202

CHAPTER 8 = RICH WEB CLIENTS

JavaScript code for Seam’s remoting services earlier. An HTML script tag is used, with the
source of the script set to reference the interface.js module:

<script type="text/javascript"”
src="seam/resource/remoting/interface.js?myComponent"></script>

The “myComponent” portion of the reference is the name of the Seam component
that you want to access from the web page using its executable stub. In the case of the
Gadget Catalog, the component we need to access is named “gadgetAdmin”, so our script
tag looks like this:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?gadgetAdmin"></script>

You only need to do this explicit generation of JavaScript stubs when an executable
stub is needed. This import triggers the check for @WebRemote annotations in the refer-
enced component. Type stubs, discussed in the next section, are automatically generated
by the Seam remoting services when they are needed.

Calling Remote Methods

Figure 8-2 depicts the steps that occur when you invoke a remote component method
from your JavaScript code. In the scenario shown in the figure, we've written a JavaScript
function, doGadgetSearch(), that is remotely invoking our Seam component,
GadgetAdminBean. The results of the remote method call are being handled by another
JavaScript function that we've written, handleResults(). All of the back-and-forth

with the remote Seam component is handled by the executable JavaScript stub for
GadgetAdminBean and the Seam remoting services.

Each annotated method in the Seam component will have a corresponding
JavaScript method on the executable stub. This method will have the same name as the
component method, and the arguments and return values will correspond to those on
the component method, mapped according to the overall mapping rules we’re covering
in this section. There will also be an additional argument added to the JavaScript
method, which is a JavaScript callback function that should be invoked when the
remote method call returns. Remember that, behind the scenes, the Seam JavaScript
code is making an asynchronous XML exchange with the server in order to carry out
the remote method call. When the XML response is received from the server and the
XML is converted into corresponding JavaScript objects, the callback function that
you pass into the method call will be invoked, and the results of the method call will be
passed in as function arguments.

CHAPTER 8 " RICH WEB CLIENTS 203

(Browser (Client)
HTML Document

o doGadgetSearch (txt)
(JavaScript Function)
handleResults (results)
(JavaScript Function)

GadgetAdminBean
o

(2)

@ XML Réquest) @

XML Response

@ gadgetAdmi$search(text)

GadgetAdminBean
Instance

Seam Application (Server)

Figure 8-2. Runtime handling of remote component methods

Assuming we've used the script tag shown earlier to load the JavaScript client stub
for our gadgetAdmin component, we could invoke the search() method with JavaScript
code along these lines:

function handleResults(gadgetMatches) {
/* Iterate through the returned gadgets and do something interesting */

function doGadgetSearch(txt) {
var gadgetAdmin = Seam.Component.getInstance("gadgetAdmin");
gadgetAdmin.search(txt, handleResults);

204

CHAPTER 8 = RICH WEB CLIENTS

Any public method on a session EJB or JavaBean component can be annotated for
remote access through an executable stub. You aren’t limited to action methods or meth-
ods with a particular signature. You do, however, need to consider the data types of the
method arguments and return values. These are going to be mapped to client-side type
stubs, discussed in the next section.

Debugging Remote Calls

I mentioned in passing that Seam’s remoting services can be configured with a debug
option. This option allows you to see the XML being passed back and forth from the
JavaScript code in the browser to the Seam components on the server. This can be very
handy when you need to figure out whether the correct data is being sent to the server
component, and whether the expected data is coming back.

The debug option is enabled by setting the debug property when configuring the
remoting services in the components. xml:

<components>

<component name="org.jboss.seam.remoting.remoting">
<property name="debug">true</property>
</component>

</components>

Enabling this option will cause every remote method call made on the client to be
displayed in a pop-up window on the browser. The window shows the full XML for each
method call and response.

Restricting the Client-Side Data

Whenever you are passing information across the network, you need to be concerned
about the size and nature of the data being transmitted. You need to ask yourself ques-
tions like, “What if someone intercepted the information before it reached the browser?”,
“What information is actually flowing across the connection?”, and so on. In our case,
we're allowing code running in the browser to make a remote call to our Seam compo-
nent running on the server, as depicted in Figure 8-2. The search text is being packaged
up in an XML message to the server. There’s probably no real problem there, unless users
get concerned about the contents of their searches being stolen and searches in

the Gadget Catalog aren’t likely to be very interesting to outside parties. The result of the
search is an array of Gadget objects, converted into an XML message back to the browser.
At first glance, this might not seem like an issue, either. After all, anyone can get access to
the Gadget Catalog for free (so far), and it’s much easier to get at the gadget information

CHAPTER 8 " RICH WEB CLIENTS

through our nice web interface than by sniffing HTTP packets on the network. But if we
take a look at the XML flowing back to the browser (using the debug option we discussed
in the previous section), we might be surprised (at first) to see the following:

<envelope>
<body>
<ref id="1">
<bean type="user">
<member name="password">
<stry>secretpassword</str>
</member>
<member name="login">
<str>jane</str>
</member>
<member name="email">
<str>jane%40gadgetcatalog.com</str>
</member>
<member name="roles">
<bag/>
</member>
<member name="name">
<str>Jane%20the%20Admin</str>
</member>
<member name="id">
<number>4</number>
</member>
</bean>
</ref>
</body>
</envelope>

Yikes! We're passing user’s passwords across the network in clear text. If you think for
a minute, you'll realize why this happened. Our Gadget bean has a submitter property,
which is the User that submitted the gadget to the catalog. This User bean has a password
property on it, and its value is persisted in a clear text column in the USER table in the
database. When the Gadget is converted to XML, Seam serializes the whole object, includ-
ing all its properties and their properties, until it hits the end of the object tree. When we
originally designed the User object and the USER table, we might have fooled ourselves
into thinking that it wasn’t a security issue. The database was protected by passwords and
the User objects only existed in the application server, and we would never display the
user’s password in the web UI, so where’s the problem? Well, we just created a huge prob-
lem by simply remote-enabling our search() method.

205

206

CHAPTER 8 = RICH WEB CLIENTS

The long-term answer to this problem is to stop storing passwords in clear text and
to remove the password property from the User object. But we probably don’t want to be
passing the other user information, like e-mail addresses, over the network either,
because our users might have some serious issues with that.

In addition to these security concerns, we may want to restrict the data sent back to
the client for performance reasons as well. Our object model might be very complex on
the server, while the client only requires a very specific subset of our model data. In this
case, sending the entire model object in XML format over an HTTP connection would be
both wasteful and slow.

Luckily, Seam thought ahead about this, and provided a way to filter the data that’s
passed back from the Seam component to the web client. The @WebRemote annotation
that’s used to mark remote-accessible methods has an exclude attribute that can be used
to specify properties and/or data types that should be excluded from the data passed
back to the browser. The exclude attribute accepts one or more dot-delimited path
expressions that indicate which properties you want to exclude from the XML data. These
path expressions can be very simple, pointing to a single property in a specific compo-
nent type. In our case, if we wanted to remove the password from the XML data, we
would change our annotation to the following:

@Local
public interface IGadgetAdminBean {

@WebRemote(exclude="submitter.password")
public List<Gadget> search(String str);

The path expressions used in the exclude attribute refer to properties on the return
value of the method being annotated by @WebRemote. In this case, we're saying that we
want to exclude the password property of the submitter property of each Gadget returned
by the search() method. Consult the Seam documentation for additional options for
these exclude path expressions.

Batching Remote Calls

If you want to reduce the number of requests sent back and forth between the server and
the client, Seam’s remoting services support the batching of remote method calls on exe-
cutable stubs. Batching requests can improve overall performance, since there is some
overhead involved in making a server connection, serializing all of the request data into
an XML message, and deserializing the response XML into JavaScript objects. You want
the user interface to be as responsive as possible to the user’s actions on the page, so the
possibility of batching requests is something you should always consider when develop-
ing a rich web client, with or without Seam remoting services.

CHAPTER 8 " RICH WEB CLIENTS

Batching remote calls is fairly simple to do with Seam. Calling the Seam.Remoting.
startBatch() method will open up a new batch call, and any subsequent calls to exe-
cutable stub methods will be added to that batch. The batch of method calls will be
executed when you call Seam.Remoting.executeBatch(). All of the batched commands
will be sent to the server in a single HTTP request, and all of the results will be sent back
to the client in a single HTTP response. When the response is received, the callbacks reg-
istered with each remote call will be executed in the order in which the remote methods
were added to the batch.

If, for example, we wanted to save an existing Gadget (perhaps using the data pulled
from client-side form elements), and then perform a search against the Gadget Catalog,
we could execute a batch request like so:

var currGadget = . . .; // The Gadget being edited

var gadgetAdmin = Seam.Component.getInstance("gadgetAdmin");
Seam.Remoting.startBatch();

gadgetAdmin.saveGadget (currGadget, saveCallback);
gadgetAdmin.search(someText, searchCallback);
Seam.Remoting.executeBatch();

Here, we're making a remote call to the saveGadget () method on the gadgetAdmin com-
ponent to save the edited Gadget, and then we’re calling search() to perform a search. We
registered a callback function called saveCallback() on the call to saveGadget(), and
another callback, searchCallback(), on the call to search(). We started a batch before
making these calls, so the two calls will be sent in one request to the server when the
executeBatch() is called. When the response is received, the results for the saveGadget()
call (if any) are assembled, and the saveCallback() function is invoked. Once that com-
pletes, the results from the search() call are passed to the searchCallback() function.

Batching requests only has an effect on remote method calls on executable stubs.
Method calls on type stubs (described in the next section) are local, so they always exe-
cute immediately regardless of whether a batch has been opened or not.

Type Stubs

If the server object being mapped by the remoting services is an entity EJB or a JavaBean
with no @WebRemote annotations, the object will be mapped to JavaScript using a type
stub. Type stubs contain only local accessors for JavaBean properties found on the class.
Any other methods on the component will not be accessible on the client side. In effect,
a type stub serves as a local copy of a data type. The data associated with a type stub is
only transmitted remotely when the object is passed as an argument to a remote method
call on an executable stub, or returned as the result of a remote method call.

207

208

CHAPTER 8 = RICH WEB CLIENTS

Looking back at our PurchaseOrder example in Listing 8-1, if we removed the
@WebRemote annotations, the component would be a regular JavaBean and would be
mapped using a type stub. The getLineItems() and getOrderStatus() methods would be
the only ones mapped in the type stub, since they have the format of JavaBean property
accessors. If a PurchaseOrder is returned as the result of a remote method call, values for
the lineItems and orderStatus properties will be serialized to the client and made accessi-
ble through the mapped getLineItems() and getOrderStatus() methods.

In most cases, type stubs will be dynamically generated as the result of calling meth-
ods on executable stubs. You'll typically identify (or write) a session EJB interface with the
functionality that you need to expose to the JavaScript client, and that will be exposed to
the JavaScript client as an executable stub. When you invoke methods on that stub, the
types for the arguments and return values for the method will have type stubs generated
for them automatically.

In the case of the Gadget Catalog, our search() method accepts a String and returns
a list of Gadget objects. The Gadget class is an entity EJB, and it will have a type stub gener-
ated for it by Seam remoting when we invoke the search() method.

The Seam JavaScript Object

As mentioned earlier, you must import Seam’s base JavaScript library in your page in
order to make remote calls to any Seam component:

<script src="seam/resource/remoting/resource/remote.js"
type="text/javascript"></script>

This JavaScript library includes two JavaScript objects that provide Seam’s client-side
support for remoting components: Seam.Component and Seam.Remoting.

Seam.Component

The Seam. Component object provides methods for accessing existing Seam server compo-
nents, as well as creating new ones, from the web client. If you want to access an existing
Seam component, you use the getInstance() method with the name of the component:

var gadget = Seam.Component.getInstance("gadget");

This call will request a JavaScript client stub for the component named “gadget” and
store it in the gadget variable. If the referenced component is a session EJB, or if the com-
ponent is a JavaBean with @WebRemote annotations, and its JavaScript mapping has been
preloaded through the Resource Servlet, the stub will be an executable stub. The exe-
cutable stub that’s returned is a singleton instance, within the scope of the page. In other

CHAPTER 8 " RICH WEB CLIENTS

words, if you request the same named component in multiple calls to getInstance()
within the same page view, the same JavaScript stub will be returned each time.

If the named component is not suitable for an executable stub (i.e., it’s an entity bean
or a JavaBean with no @WebRemote methods), the returned stub will be a type stub. Now
that we have this stub, we can access the data on the component and use it in the web
page. In the case of our Gadget component, it is an entity EJB and will be mapped using
a type stub, so we can access the Gadget’s name, for example, like so:

var name = gadget.getName();

In addition to requesting existing named components, you can also request a brand
new instance of a given component type. This can be useful when you want to use AJAX
calls to add a new object to the server-side persistence, for example. The newInstance()
method takes the name of a Seam component, makes a request to the server to create
anew instance of the same type of component, generates a JavaScript client stub for the
new component, and returns it. If we wanted a new Gadget object, for example, we could
make the following JavaScript call in the web page:

var newGadget = Seam.Component.newInstance("gadget");

If you have a JavaScript reference to a component and need to know its component
name, you can use the getComponentName () method:

var compName = Seam.Component.getComponentName(gadget);

This method is useful when you are passing JavaScript references between functions
in the page and need to know whether a reference is a component reference or not. If
the getComponentName () method returns null, the reference does not refer to a Seam
component.

Seam.Remoting

The Seam.Remoting object provides lower-level remoting functions. Typically, you'll be
using methods from the Seam.Component object in your JavaScript code, and these meth-
ods will in turn use the Seam.Remoting functions to implement the component-level
functionality. But Seam.Remoting methods are available for you to use if needed.

The Seam.Remoting.createType() method can be used to create references to regular
Java objects. While Seam.Component.newInstance() is used to create a new instance of a Seam
component, Seam.Remoting.createType() is used to create noncomponent Java objects. The
argument to createType() is the full classname of the object you want created. Seam will
instantiate the object on the server, and then generate a JavaScript type stub for it on the
client. In the Gadget Catalog object model, for example, the StatusCode class is an entity

209

210

CHAPTER 8 = RICH WEB CLIENTS

bean that is not marked as a Seam component. If we wanted to create a new StatusCode
object and get a reference to it from the web client, we would do the following:

var statCode = Seam.Remoting.createType("org.jimfarley.gadgets.StatusCode");

If the call is successful, the statCode JavaScript variable will be a type stub for a new
StatusCode entity bean created on the server. This can then be updated on the client
and/or passed into component method calls through execution stubs.

The other useful method in Seam.Remoting is the getTypeName() method. This method
will return the fully qualified classname for the server-side object reference passed into
the method.

Implementing the Auto-Complete Search Box

After all that background on Seam remoting services, we can finally turn to implement-
ing the auto-complete search box in the Gadget Catalog home page. For now, we are
going to limit ourselves to using just the Seam JavaScript library and native browser
JavaScript to implement a simple auto-complete function on the main home page in the
Gadget Catalog. In the next section, we’ll look at how Seam’s remoting functions can be
integrated with another AJAX library to implement more complex and interesting rich
client elements.

In order to implement the auto-complete function, we need to do the following:

1. Capture the characters that the user types into the search input field as they are
being typed.

2. Make a remote call to the search() method on the gadgetAdmin component,
passing it the text the user has typed so far in the search box.

3. Take the returned list of matching Gadget objects and give the user the appropriate
feedback in the page.

The first step is to add a JavaScript callback to the input field in the page that will be
triggered whenever the user types text into the field. Our input field is just a JSF inputText
control, so we can accomplish this by adding an onkeyup callback to the control:

<h:inputText id="gadgetSearch"
value="#{gadgetAdmin.searchField}"
onkeyup="searchGadgets();"/>

With this change, the searchGadgets() JavaScript function will be invoked whenever
a key is released inside the input field. In the searchGadgets() JavaScript function, we’ll
need to pull the characters from the input field. This is typically done in AJAX contexts

CHAPTER 8 " RICH WEB CLIENTS

by pulling the input element from the DOM for the page and querying its value property.
The simplest way to accomplish this is to put a unique ID value on the input element:

<html>
<input id="searchField" . . ./>

</html>

Then in your JavaScript you can use the getElementById() method on the DOM to get
the input element directly:

function searchGadgets() {
var inputElement = document.getElementById("searchField");
var txt = inputElement.value;

We can't use this approach directly, however, because we are using JSF controls, and
JSF assigns its own internal unique ID to the HTML input element that it generates. We
won't know what that ID will be at runtime, so we need to look up the input field some
other way.

One trick that we can use is to wrap the JSF input control with a div tag with a unique
ID that we assign:

<html>

<div id="searchFieldWrapper">
<h:inputText id="gadgetSearch"
value="#{gadgetAdmin.searchField}"
onkeyup="searchGadgets();"/>
</div>

</html>

This allows us to easily “locate” the generated input element in the DOM by first
looking up the div tag by ID, and then getting its child, which will be the input field:

function searchGadgets() {
var divElement = document.getElementId("searchFieldWrappexr");
var inputElement = divElement.getElementsByTagName("input")[0];
var txt = inputElement.value;

211

212

CHAPTER 8 = RICH WEB CLIENTS

Once we have the user’s text, we can then make our call to the gadgetAdmin
component to perform the search:

function searchGadgets() {
var divElement = document.getElementId("searchFieldWrapper");
var inputElement = divElement.getElementsByTagName("input")[0];
var searchText = inputElement.value;
var gadgetAdmin = Seam.Component.getInstance("gadgetAdmin");
gadgetAdmin.search(searchText, searchGadgetsCallback);

The last argument to the search() method is our callback function, to be invoked
when the response is received. For our purposes, the callback function will take the list
of Gadget objects and provide feedback to the user. To keep things simple to start, we'll
just check the list, and if there is a single match in the list (i.e., the user has typed enough
text to target a single gadget in the catalog), we'll change the text in the input field to the
full name of the gadget. If there are multiple matches, we’ll simply ignore them and not
do anything. Listing 8-2 shows our final pair of JavaScript functions—the searchGadgets()
function that receives the onkeyup events from the input field and the
searchGadgetsCallback() function that is called when the remote search() method
call gets a response.

Listing 8-2. JavaScript for Basic Auto-Complete Enhancement

<script type="text/javascript">

//<! [CDATA[

function searchGadgets() {
var divElement = document.getElementId("searchFieldWrapper");
var inputElement = divElement.getElementsByTagName("input")[0];
var searchText = inputElement.value;
var gadgetAdmin = Seam.Component.getInstance("gadgetAdmin");
gadgetAdmin.search(searchText, searchGadgetsCallback);

function searchGadgetsCallback(result) {
var divElement = document.getElementId("searchFieldWrapper");
var inputElement = divElement.getElementsByTagName("input")[0];
if (result.length == 1) {
searchField.value = result[0].getName();

}
/7 1
</script>

CHAPTER 8 " RICH WEB CLIENTS

Notice that our searchGadgetsCallback function accepts a single argument, results.
As mentioned in the section “Calling Remote Methods” earlier, Seam will map the return
value from the remote method call into the appropriate JavaScript entities and pass them
into the callback that was provided when the method call was requested. In this case,
GadgetAdminBean.search() returns a list of Gadget objects, so this will be converted to a
JavaScript array of objects mapped from the Gadget bean. In our searchGadgetsCallback
earlier, we check the length of this array, and if it’s a single gadget only, we take the name
from the gadget and assign it as the value of the search input field.

Now, if the user types in enough text to match a single gadget in the catalog, our AJAX
code will auto-complete the full gadget name, as shown in Figure 8-3.

Gadget Catalog: Home
Find gadgets: [apple | |

Tasks assigned to you:

Gadget Catalog: Home

Find gadgets: | Apple MacBook Pro 15'|

Tasks assigned to you:

Figure 8-3. Simple auto-complete enhancement

Since the auto-complete function has ensured that the search matches a single
gadget, the user can now hit the Search button and see a results page with just the gadget
he or she wants. To make the experience a bit better, we can adjust the navigation rules
to take the user directly to the gadget edit page if the search results contain a single
gadget. I won't show those details here since it’s just basic JSF manipulation, but you can
see the changes to the faces-config.xml and GadgetAdminBean.search() action method in
the downloadable code examples that accompany this book.

213

214

CHAPTER 8 = RICH WEB CLIENTS

Integration with AJAX Libraries

Our simple auto-complete function is a good start, but there are a number of ways we
could improve it. For one, it would be nice to show users multiple matches to the text
they are typing in the search field, so that they can dynamically see their options narrow-
ing as they type, and can pick the gadget they want as soon as it appears rather than
typing more characters to try to get a single match. We'd like to show the matches in a
dynamic drop-down menu as well.

We could go ahead and write our own DOM manipulation code in JavaScript to make
these enhancements, but there are many, many AJAX libraries available (Script.aculo.us,
Yahoo! UI, Google, etc.) that provide this functionality and much, much more. Why
should we reinvent something that’s already been done?

The complication we face is that we want to use Seam’s remote services to make calls
back to our Seam components, but we want to use an AJAX library to do the event han-
dling and DOM manipulation. AJAX libraries provide their own client/server request
handling (after all, asynchronous XML requests are a core part of AJAX), so we need to be
able to unplug the AJAX communications from the library and plug in our remote com-
ponent calls.

In some cases, this will be easy; in other cases, it will be difficult or even impossible,
depending on how the library is designed. To demonstrate how this would be done in
cases where the library supports it, we'll use the Yahoo! UI? AJAX library to enhance our
search auto-complete feature. I won't go into deep details about how the Yahoo! UI
library works. Instead, I'll just highlight the details relevant to our integration with Seam’s
remoting capabilities.

First of all, the auto-complete library in Yahoo! UI needs to know the field that is the
source of the text for the auto-complete matching, and it needs a div tag that will be used
to display the contents of the matches. We already devised a way to get the id attribute of
our JSF-generated input field, so we're set on that front. We just need to insert a new,
empty div tag as the target of the auto-complete match display:

<html>

<div id="searchFieldWrapper">

<h:inputText value="#{gadgetAdmin.searchField}"/>
</div>
<div id="gadgetMatches"></div>

</html>

2. The code in this section was written using version 2.2.2 of the Yahoo! UI AJAX library.

CHAPTER 8 " RICH WEB CLIENTS

Notice that we've also removed the onkeyup JavaScript callback—the Yahoo! Ul library
is going to take care of all the event handling and display for us, so it’s no longer needed.

Configuring the Yahoo! UI auto-complete feature involves two basic steps. First, you
need to configure a data source that will be used to do the matching. Yahoo! UI comes
bundled with several data source implementations, including ones that support client-
side data arrays embedded in the page, AJAX calls over an HTTP connection, and so
forth. For our purposes, we want to use a custom data source, one that uses Seam remot-
ing to acquire the match data from our server-side Seam component.

The key method that we need to override on the Yahoo! Ul DataSource object is
doQuery(). This method performs the query against whatever data source is being used,
and then invokes internal Yahoo! UI code to render the results in the page dynamically.
We want doQuery() to make a Seam remoting call to our gadgetAdmin component rather
than use one of the bundled query approaches, so we implement our version like so:

DS_SeamRemoting.prototype.doQuery = function(callback, query, parent) {
var origCallback = callback;
var instance = this;
var callbackWrapper = function(results) {
/* Put the results into the internal results cache */
var resultObj = {};
resultObj.results = results;
instance. addCacheElem(resultObj);
/* Fire an event to signal the arrival of new results */
instance.getResultsEvent.fire(instance, parent, query, results);
/* Invoke the callback passed in by the auto-complete library, to
cause the auto-complete magic to happen */
origCallback(query, results, parent);
}
var gadgetAdmin = Seam.Component.getInstance("gadgetAdmin");
gadgetAdmin.seamComponent.search(query, callbackWrapper);
return;

};

The bulk of the doQuery () method is setting up a wrapper callback that is a simplified
version of the one used by the bundled DataSource versions in Yahoo! UL Then we simply
call our Seam remote method, using our wrapper callback as the callback for the
remote call. Seam makes the remote call, and when the response is received, our
callbackWrapper () function is called. In the function, we do some required Yahoo! Ul
housekeeping, and then we call the callback passed into the doQuery() method. This
callback is provided by the auto-complete library and performs all the DOM manipula-
tion needed to render the results to the user.

215

216

CHAPTER 8 ' RICH WEB CLIENTS

Finally, we need to configure an auto-complete object from the Yahoo! Ul library,
telling it to use our specialized DataSource, and also attaching it to the search field and the
div tag to be used for the results display.

var divElement = document.getElementId("searchFieldWrapper");
var inputElement = divElement.getElementsByTagName("input")[0];
gadgetDS = new DS_SeamRemoting();
gadgetAC =
new YAHOO.widget.AutoComplete(inputElement.id, 'gadgetMatches', gadgetDS);
gadgetAC. formatResult =
function(oResultItem, sQuery) {
var sMarkup = oResultItem.getName();
return (sMarkup);

};

The AutoComplete constructor takes three arguments: the ID of the input text field to
use for the matching, the ID of a div tag to be used to display the auto-complete matches,
and the DataSource to be used for the matching itself. We use the same trick we used ear-
lier to find the ID of our input element, and we pass it in as the ID of the input element.
We know the ID of the div tag since we inserted it directly into the HTML, so we just pass
that in as a literal value. The DataSource is an instance of our custom subclass. The only
other piece of integration work we need to do is specialize the formatResult() method on
the AutoComplete object. The results coming back from our custom DataSource will be an
array of mapped Gadget objects, so we need to adjust this method to call the appropriate
method on the result items in order to get the text to display in the drop-down menu
generated in the web page.

With all of this in place in our home page, the user will now see a nice drop-down list
of possible matches as he or she types text into the search field, as shown in Figure 8-4.

Apple MacBook Pro 15"
Tasks assigne Dell D620 asks you can accept:
ThinkPad T80 laptop

REVIEW U Ly PES assigl o W Appes viasouok Pro 15"
Review the core data for Apple MacBook Pro 15"

Figure 8-4. Auto-complete using Seam remoting and Yahoo! UI

CHAPTER 8 " RICH WEB CLIENTS

There are any number of other rich client enhancements we could make to the Gad-
get Catalog interface using Seam remoting. We could, for example, create in-place editing
of gadgets right from the search results page. The user could hover over a gadget in the
list until an edit pane appeared, and changes he or she makes in the edit pane could be
transferred back to the server using a Seam remote call to the gadgetAdmin component.
The principles in these enhancements would be the same as what you've already seen,
though.

Summary

In this chapter, we've explored the Seam remoting services and the ways that they enable
you to integrate rich web features into your Seam applications.

Seam remoting services are a general-purpose tool for generating JavaScript stubs for
your Seam components and other Java objects. But their most useful application is in
AJAX contexts, where you want to incorporate more interactive UI elements and improve
the user experience in your application. The exciting aspect of this is that Seam automat-
ically creates a direct bridge between JavaScript in the browser and EJBs and JavaBeans
running in the Seam application on the server. All the AJAX details are hidden from you
by the Seam JavaScript library on the client and by the remoting services running in your
application. You don’'t have to generate or consume any XML or JSON data directly
(unless you really want to). Everything on the server side is Java; everything on the client
is JavaScript objects and functions.

We examined the general model behind the Seam remoting services, and you saw
how to configure the server to run the remoting services. You also saw how to load the
required JavaScript in the browser using the Seam Resource Servlet. Then we used the
Seam remoting services to add auto-complete features on the search fields in the Gadget
Catalog. We did this in two ways: first we did a simple version using just the JavaScript
generated by Seam, and then we implemented a richer version by integrating the Seam
JavaScript code with the Yahoo! Ul library and its auto-complete objects.

217

Index

A

access control, 128-130
component-level restrictions, 151-152
dynamic, 153-154
page restrictions, 143-144
See also authorization services

action listener methods, 41, 108
for joining conversations, 88-90
starting and ending conversations with,

78-82, 88

actions
in business process model, 160
in pageflows, 106
page, 18, 36, 108

Actor class, 184

actor component, 184

actor IDs, 184

actors, in jBPM framework, 161

addRole() method, 148-149

AJAX (Asynchronous JavaScript and XML),

19,193

auto-complete feature, 196

input element, 210

libraries, integration with, 214-217

for rich web clients, 194

Seam remoting services and, 194-195
annotations

for component name binding, 3, 44-46

to initiate pageflows, 109-111

See also specific annotations

application contexts, 67

application servers
configuration, 21-28
Enterprise JavaBeans 3.0, 22-25
J2EE 1.4 server, 28
Java 5.0 requirement, 21-22
Java EE 5.0, 26-28
JavaServer Faces, 22
JBoss 4, 25-26

applications, Seam
configuring, 28-36
configuration files, 33-36
EJB components, 33
Facelets, 30-31
install core libraries, 29
plug-ins, 31-32
apply request values phase (JSF life cycle),
71
archive files
applications deployed as, 23
seam.properties file in, 45
arrays, mapping, 199
assembly-descriptor section, interceptors
in, 26
assignToCurrentActor action method, 187
Asynchronous JavaScript and XML. See
AJAX
authentication services, 127, 134-146
configuring, 132
enabling, 134-135
exception handling, 144-145
login and logout links, 142
login form, 135-137
login handler, 137-142
page restrictions, 143-144
authenticator component, 137
authorization services, 127-128, 146-156
advanced, 153-156
component-level restrictions, 151-152
JBoss Rules, 154-156
page access rights, 150-151
user role assignments, 147-149
AuthorizationExceptions, 150-151
auto-complete function, 196, 214-215
AutoComplete constructor, 216
AutoComplete object, 216

219

220

INDEX

B
back attribute, 120
backing beans, 40
batch calls, 207
@Begin annotation, 78-82, 116
for starting conversations, 78-82
id attribute, 92
join parameter, 89-90
nested=true option, 92
to initiate pageflow, 109-111
<begin-conversation> element, 112
@BeginTask annotation, 165
bijection, 4, 60-65, 178-183
bootstrap bean, 25
BPEL. See Business Process Execution
Language
BPM. See business process management
browser back button, pageflow
management and, 119-121
browser-accessible components, 41-42
business process context, 17, 69, 178-183
business process data, 178-183
Business Process Execution Language
(BPEL), 99
business process management (BPM), 69
concepts of, 159-161
defining process flows, 174-177
Gadget Catalog, 167-169
integrating jBPM and Seam, 165-166
introduction to, 159
jBPM framework for, 161-164
pageflow and, 159
starting processes, 177-178
task execution, 183-191
See also Java Business Process
Management (jJBPM)
business process models, 160
business processes
executing, 162
integration of, 18
starting, 177-178
uses of, 160
See also business process management
business scope, 17

C
caching issues, with EJBs, 60
callbacks, 18, 47-49
client stubs
executable, 198-207
batching remote calls, 206-207
calling remote stubs, 202-204
debugging remote calls, 204
restricting client-side, 204-206
type, 198, 207-208
client-side data, restricting, 204-206
code annotations. See annotations
commandLink control, 187
component contexts, 67-71
component mode, EJB, 40
component remoting services
configuring, 196-198
client-side, 197-198
server-side, 196-197
support for rich web clients in, 194-195
component services, 16-18, 43-65
bijection, 60-65
callbacks, 47-49
life cycle services, 47-49
name binding, 43-47
component types, 39-42
action listeners, 41, 108
browser-accessible components, 41-42
form backing beans, 40-41
component-driven events, 18, 49, 145-146
component-level restrictions, 151-152
components
configuring with XML, 46-47
creation of, 48-49
destruction of, 49
enabling access to, 198-208
components.xml file, 24, 34-35, 44
configuring components with, 46-47
configuring jBPM in, 106-107
event element, 145
org.jboss.seam.core.Jbpm component,
170
security:identity element, 132, 135
concurrent conversations (workspaces),
90-98, 108
conditional flow, 117-119

configuration files, 33-36, 107-108.
See also components.xml;
faces-config.xml file

context/scope model, 61

contexts, 67-71

application, 67

business process, 17, 69, 178-183
JSF life cycle and, 69-71

runtime, 67

Seam’s, 17, 68-69

session, 67

state management and, 74
subcontexts, 68

user conversations, 68

See also conversations

conversation IDs, 76, 92

conversation management, 36

conversation scope, 17

conversationPropagation parameter,
87-90

conversations, 17, 72-74

as subsessions, 75
basics of, 74-88
concurrent, 90-98, 108
expiration of, 76-77
implicit vs. explicit, 77-78
joining, 88-90
life cycle, 75-77
motivations for, 74
nesting, 90-93
other contexts and, 75
page descriptions, 95-96
pageflow and, 108
propagation of, 87-88
starting and ending, 78-88
on page links, 82-88
with action listener methods, 78-82,
88

conversions, between objects and strings,
56-57

core-data state, 116

@Create annotation, 48, 59

@Create method, 111

@CreateProcess annotation, 165, 170,
177-178, 182

INDEX

create attribute, @In annotation, 62
custom nodes, 163

D

data, restricting client-side, 204-206
database model
defining user roles, 131
Gadget Catalog, 72-73
@DataModel annotation, 85
@DataModelSelection annotation, 86
DataSource
configuring a default, 24-25
setting, 173-174
dataTable control, 188
debug option, remoting services, 197, 204
decision nodes, 162
dependency injection, 60-65
bijection, 4, 60-65, 178-183
dynamic bijection, 65
outjection, 63-65
simple, 61-62
deployment descriptors
interceptors in, 33
specifying XML schema for, 27
validation of, 26
description languages, 100-103
@Destroy annotation, 49
destroy() method, 49
drools/lib directory, 134
dynamic access control, 153-154
dynamic bijection, 65
dynamic injection, 61

E

EAR files, 23

EJB. See Enterprise JavaBeans
ejb-jar.xml file, 26-28

EL. See Expression Language
el-api.jar file, 133

el-ri.jar file, 133
embedded-ejb/conf directory, 23
encapsulation, of pageflow, 122-124
@End annotation, 78-82, 93, 121
end-conversation element, 122
end-state element, 177
@EndTask annotation, 165, 181

221

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

enterprise archive (EAR) files, 23
Enterprise JavaBeans (EJB)
component model, 40
bridge between JSF component
model and, 15, 50-51, 57-58
interceptors, 26-28
integration of, into JSF without Seam,
50
jar structure, Seam-enabled, 46
using as JSF managed beans, 49-60
Enterprise JavaBeans (EJB) components
configuring default DataSource for,
24-25
configuring, 33
direct use of, 3
integrated with JSF pages, 11-14
remote access to, 200-202
Enterprise JavaBeans (EJB) 3.0, 2, 22-25
adding embedded configuration files,
23
configuring, 23-24
container, installing in JBoss, 4, 25-26
J2EE 1.4 server and, 28
libraries, installing embedded, 23
running Seam with embedded, 22-25
entity beans, callbacks and, 48
entity EJBs, 40
as action listeners, 41
Seam-enhanced, 15-16
enum values, mapping, 199
error handling. See exception handling
event element, 145
events, 17, 101
component-driven, 18, 49, 145-146
in business process model, 160
page actions, 18
exception element, 144-145, 150-151
exception handling, 36
authentication, 144-145
authorizations, 150-151
exclude attribute, @WebRemote
annotation, 199, 206
executable stubs, 198-207
accessing Seam server components, 208
batching remote calls, 206-207
calling remote methods, 202-204
debugging remote calls, 204

loading through Resource Servlet, 201

restricting client-side data, 204-206
explicit conversations, 77-78
Expression Language (EL), 31

custom authorization expressions,

153-154
libraries, 133
security-related expressions, 133

F
Facelet view handler, 31, 133
Facelets, 136
configuring, 30-31
UI composition features, 136
faces-config.xml file, 4, 14, 30, 43-44
JSF navigation rules in, 107
managed-beans entries, 4, 15
navigation rules in, 100-101, 189
phase listener in, 70-71
@Factory method, 111
filters, servlet, 32
flow description languages, 100-103
fork element, 177
fork nodes, 163
form backing beans, 40-41
formatResult() method, 216
form, creating login, 135-137
framework, defining, 1

G
Gadget bean, 5, 7
Gadget Catalog (sample application), 4-5
administrative home page, 83
assigning tasks to users in, 186-188
authorization services, 147-149
auto-complete search box, 210-213
beginning conversations in, 79-81
business process management for,
167-169
component services
bijection, 60-65
callbacks, 47-49
life cycle services, 47-49
conversation context in, 87-88
conversational features, 72-74
database model for, 5, 72-73
defining process flows in, 174-177
ending conversations in, 81-82

extending, 51-60

gadget review process, 167-169

improving user interactions, 196

integrating security features into,

129-131

login handler for, 140-142

nested conversations in, 91-92

“new gadget” wizard, 105

object model for, 72

pageflow, 5

pages.xml file, 95

rich web client for, 196

with Seam, 15-16

without Seam, 5-14

search function implementation, 82-87

simplified class design with Seam, 51

starting and ending tasks in, 188-191

starting business processes in, 177-178

type management, 42—43

user interface for, 73-74
GadgetAdminBean session EJB, 7-8
GadgetReviewBean class, 181
getAsObject() method, 56
getAsString() method, 56
getComponentName() method, 209
getConverter() method, 59
getElementByld() method, 211
getFormBean() accessor, 62
getGadgetTypes() utility, 55
getType() method, 53

<h:commandlink> control, 112

Hibernate configuration, 170-171
avoiding conflicts with JBoss

transaction management, 171-172

hbm2ddl.auto property, 174
hibernate.cfg.xml file, 170, 172-174, 179
object-relational mapping for, 179
setting DataSource, 173-174

hibernate-all.jar library, 23

Hypersonic Java database, 24

id attribute, @Begin annotation, 79, 92
Identity class, 138

INDEX

identity component, 132-138, 142,
147-149
identity.password property, 135
identity.username property, 135
implicit conversations, 77-78
@In annotation, 61-62, 154, 189
input element, 210-211
instance() method, 138
interaction paradigm
in traditional web interfaces, 193
on rich web clients, 194
interceptors
EJB, 33
entry, 27-28
invoke application phase (JSF life cycle),
71
isTransactionEnabled property, 171

J

J2EE 1.4 application servers
configuration, 28
running Seam applications on, 25
JBoss 4, 25-26
Java 5.0
annotations, 2
J2EE 1.4 server and, 28
requirement for, 21-22
Java Authentication and Authorization
Services (JAAS), 128
Java Business Process Management
(jBPM), 99-100
avoiding conflicts with JBoss
transaction management, 171-172
business process data, 179-183
business process integration, 18
configuring in Seam, 170-174
defining process flows with, 174-177
framework, 161-164
setting DataSource, 173-174
Hibernate configuration, 170-171
identification of users and roles by, 184
integrating with Seam, 165-166
jbpm.cfg.xml file, 170-172
pageflow, 103-104, 108, 159
process definitions, 163-164
process model, 162-163
Seam pageflow model and, 106

223

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

Java Enterprise Edition (Java EE)
configuration, 26-28
dependency injection, 60
differences in, when combined with
Seam, 39
improved features of, 2
Seam and, 1, 3
Seam extensions to, 16-19
Seam simplifications for, 1-16
security features, vs. Seam security,
128-129
standard framework, 1-2
Java Standard Edition (Java SE), 1
Java types
for persistent process data, 179
mapping, 198-199
java.lang.Boolean, 199
java.lang.Number, 199
java.lang.String, 199
java.util.Date, 199
JavaBeans, 40
annotated for remote access, 200
managed beans treated as, 49-50
JavaBean wrappers, for EJB components,
11-14
JavaScript
AJAX and, 194
client stubs, 198-208
mappings, 199
objects, 208-210
rich web clients and, 193
JavaServer Faces (JSF), 2, 22
action methods, 101
backing beans in, 40
bridge between EJB and, 3, 15, 50-51,
57-58
controls, 111-112
Converter subclass, 56-57
form creation, 53-54
input control, 211
J2EE 1.4 server and, 28
life cycle, Seam context and, 69-71
navigation, combining with jBPM
pageflow, 103
request processing life cycle, 75
views, binding to flow states, 106

JavaServer Faces (JSF) components
code annotations for binding beans
to, 3
standard component binding, 43-44
JavaServer Faces (JSF) managed beans
binding to classes, 11-14
using EJBs as, 49-60
JavaServer Faces (JSF) navigation rules,
100-101, 104
encapsulation and, 122
in faces-config.xml file, 107
JavaServer Faces (JSF) pages
integrating EJB components into, 11-14
using EL expressions in, 133
JavaServer Faces (JSF) phase listener, 31,
51,70-71
JAX-WS 2.0, 2
JBoss 4 server, configuring, 25-26
JBoss Enterprise Middleware Suite
(JEMS), 26
JBoss Rules
authorization with, 154-156
defining authorization rules with, 134
framework, 18
JBoss Seam. See Seam
JBoss transaction management, avoiding
conflicts between jBPM and,
171-172
jboss-beans.xml configuration file, 24
jboss-ejb3-all.jar library, 23
jboss-seam jar library, 29
jboss-seam-remoting.jar library, 196
jboss-seam-ui.jar library, 32, 133
jBPM. See Java Business Process
Management
jBPM Process Definition Language (jPDL),
99-100, 163-164
advantages of, 122-124
conditional flow support in, 117-119
configuring pageflows, 106-108
configuring process flows with, 175-177
language of, 100-103
pageflow basics, 100-103
pageflow integration, 18
referencing process definitions, 170
sample pageflow definition, 102-103
XML files, 108

JEMS installer, 26

JNDI pattern, 35

jndi.properties files, 23

@]JoinTable annotation, 148

join nodes, 163

join parameter (@Begin annotation),
89-90

jPDL. See jPBM Process Definition
Language

jPSL, expressiveness of, 124

JSP/]JSF environment, standard contexts,
68

L

life cycle services, 47-49

link tag, 88

listener, adding to web.xml file, 46
@Local annotation, 200

loggedIn property, 147

login error messages, 138

login forms, creating, 135-137
login handler, creating, 137-142
login links, 142

login services, configuring, 132
login() action method, 134-138, 142
login-required attribute, 143
Login.login() action method, 184
logout links, 142

managed beans
binding to classes, 11-14
@Name annotation, 15-16
treated as POJOs, 49-50
using EJBs as, 49-60
@ManyToMany annotation, 148
Map collections, mapping, 199
message-driven beans, 40-42
META-INF directory, 34
method calls, on type stubs, 207

N

@Name annotation, 15, 33, 44-46
name binding, component, 43-47
navigation rules, 100-101
navigation-rule entries, 104
navigation-rule section, 14

INDEX

nested conversations, 90-93
newGadget() method, 8
newlnstance() method, 209
no-conversation-view-id attribute, 121
nodes

custom, 163

decision, 162

fork, 163

in business process model, 160

in jBPM process model, 162-163

join, 163

page, 113-121

state, 162

task, 162, 177
notLoggedIn event, 145-146
NotLoggedInException, 146

0

object models, 72

objects, converting to strings, 56-57

@QObserver annotation, 49

org.jboss.seam.core.ejb, 23

org.jboss.seam.core.Jbpm component,
170

@QOut annotation, 63-65

outcomes, 101

outjected variables, 180

outjection, 61-65, 180

P

page access. See access control
page actions, 18, 36, 108

page configurations, relationships among,

107-108
page descriptions, assigned to
conversations, 95-96
page elements, 103, 112-113
in pages.xml file, 113
no-conversation-view-id attribute, 121
specifying states with, 113-116
page links
starting and ending conversations on,
82-88
starting pageflows with, 111-113
page navigation, 36, 100-101
page nodes, defining, 113-121
page restrictions, 143-144

225

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

226

INDEX

page views, with explicit conversation
contexts, 94-96
pageflow attribute, 109-111
pageflow states, specifying with page
elements, 113-116
pageflow-definition element, 103, 110
pageflows
actions in, 106
as part of business process
management, 159
back button and, 119-121
conditional flow, 117-119
conversations and, 106-108

defining page nodes and transitions,

113-121
ending, 121-122
flexible, through encapsulation,
122-124
integrated with jPDL, 18
initiating, 108-116
with annotations, 109-111
with page links, 111-113
jBPM, 103-104, 108
jPDL, 100-103, 106-108, 122-124
relationships among page
configurations, 108
Seam model, 106
stateful, 104
pages, descriptions of, 95
pages.xml file, 36

exception element, 144-145, 150-151

page descriptions and, 95-96
page element in, 88, 112-113
page specifications in, 107
restrict element, 143-144
stateful descriptions in, 94-95
@PersistenceContext annotation, 8
permissions, 127-128, 154. See also
authorization services
persistence
default DataSource for, 24-25
of process data, 179-183
units, 8
persistence.xml file, 24
phase listeners, 70-71
pickGadget() method, 86-87

plug-ins

optional web features, 32

Seam JSF phase listener, 31

servlet listener, 31
POJOs (plain old Java objects), 41
pooled tasks, 187
pooledTask component, 187-189
pooledTaskInstanceList component, 186
postAuthenticate event, 145-146
process definitions

assigning tasks to users in, 183

jBPM, 163-164
process flows, defining, 174-177
process validations phase (JSF life cycle),

71

process-definition element, 103
processDefinitions property, 170
propagation attribute, 88, 112

R
redirect element, 145-146
remote access
in Seam component model, 42
restricting client-side data, 204-206
to server components, 198-208
executable stubs, 199-207
Java type mappings, 198-199
type stubs, 207-208
@Remote annotation, 200
remote calls
batching, 206-207
debugging, 204
wrapper callback for, 215
remote methods, calling, 202-204
remoting runtime, 194-195
remoting services
auto-complete function
implementation, 210-213
configuring
client-side, 197-198
server-side, 196-197
debug option, 204
integration with AJAX libraries, 214-217
JavaScript objects for, 208-210
@Remove annotation, 49
render response phase (JSF life cycle), 71
required attribute, @In annotation, 62

required attribute, @Out annotation, 64
Resource Servlet, 197-198, 201
restore view phase (JSF life cycle), 71, 75
@Restrict annotation, 151-154
restrict element, 143-144, 150
return values, 101
review-core task, 190
reviewGadget component, 181
rich web clients, 19
AJAX for, 194
auto-complete search box
implementation, 210-213
component remoting services and,
194-195
defined, 193-194
enabling access to server components,
198-208
executable stubs, 199-207
Java type mappings, 198-199
type stubs, 207-208
integration with AJAX libraries, 214-217
introduction to, 193
remoting services for, 196-198
user interactions on, 194
role assignment, 147-149, 184
Role entity bean, 147-148
roles, 128
rule definition files (.drl), 155-156
runtime contexts, 67
runtime model, 194-195

S
s:hasPermission() function, 154-156
s:hasRole() function, 150-156
s:link control, 187
@Scope annotation, 60, 138
scope attribute, @In annotation, 62
scope attribute, @Out annotation, 64
scopes, 67
ScopeType.BUSINESS_PROCESS, 178
Seam
component contexts, 17
component remoting services, 194-195
configuring jBPM in, 170-174
installing core libraries, 29
integrating jBPM with, 165-166
as framework, 1

INDEX

Java EE and, 1
Java EE extensions, 16-19
Java EE simplifications, 1-16
JavaScript object, 208-210
pageflow model, 106
preparing application server for, 21-28
remoting services, 196-198
running with JBoss embedded EJB 3.0
container, 22-25
running without EJB 3.0, 25
security. See security
Seam applications
configuring
configuration files, 33-36
EJB components, 33
Facelets, 30-31
install core libraries, 29
preparing application server, 21-28
plug-ins, 31-32
Seam component model, 3, 4
component services, 16-18, 43-65
bijection, 60-65
callbacks, 47-49
contexts, 17
conversations, 17
events, 17-18
life cycle services, 47-49
name binding, 43-47
Seam component types, 39-42
action listeners, 41
browser-accessible components, 41-42
Seam components
accessing, 208-209
configuring with XML, 46-47
creating new instances of, 209
Seam conversations. See conversations
Seam EJB interceptor, 33
Seam events, 17-18
Seam Facelet view handler, 133
Seam JSF phase listener, 31
Seam servlet listener, 31
Seam Ul library, 32
Seam-enabled EJB jar structure, 46
Seam.Component.getInstance() method,
208
Seam.Component.newlnstance(), 209
Seam.Component object, 208-209

227

I
=}
=%
=
—h
&
177}
—
@
-
)
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
i
[
o
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

228

INDEX

seam.properties file, 34, 45
Seam.Remoting object, 208-210
Seam.Remoting.createType() method, 209
Seam.Remoting.executeBatch() method,
207
Seam.Remoting.getTypeName() method,
210
Seam.Remoting.startBatch() method, 207
SeamlListener, 46, 51
search() action method, 85, 201, 212
security
access control, 128-130, 143-144,
153-154
authentication services, 127, 134-146
enabling, 134-135
exception handling, 144-145
login and logout links, 142
login form, 135-137
login handler, 137-142
page restrictions, 143-144
authorization services, 127, 146-156
advanced, 153-156
component-level restrictions,
151-152
page access rights, 150-151
user role assignments, 147-149
configuring Seam, 132-134
integrating into Gadget Catalog,
129-131
Java EE vs. Seam, 128-129
Seam support for, 127-129
services, 36
user interface access control, 130
security:identity element, 132, 135
selectltem component, 55
selectOneMenu component, 55
server components, enabling access to,
198-208
executable stubs, 199-207
Java type mappings, 198-199
type stubs, 207-208
servlet filters, 32
servlet listener, 31
session beans
remote access to, 42
stateful, 40-41, 60
stateless, 40-41, 48

session contexts, 67, 74
session EJB, 7-8
SQL reserved words, 7
start nodes, representing with start-state
element, 177
start-page element, 103, 108-113, 177
start-state element, 108-113, 116
startReviewTask() action method, 189-190
@StartTask annotation, 165, 188
state definitions
adding end-conversation element to,
122
in JSF navigation, 104
state management, 74
state nodes, 162
stateful descriptions, for page views,
94-95
stateful session EJBs
as action listeners, 41
as backing beans, 40
event scope with, 60
@Stateless annotation, 8
stateless contexts, 17
stateless session beans, 40
as action listeners, 41
callbacks and, 48
states, 101, 104
strings, converting to objects, 56-57
stubs
executable, 198-207
type, 198, 207-208
subcontexts, 68
subsessions, 75
switcher component, 94-97

T
task execution, 183-191

task IDs, 183, 188

task instances, 183

task nodes, 162, 177

task-node element, 177

taskInstance attribute, 187

taskInstance component, 189
TaskInstance objects, 186
taskInstanceList component, 186-189
taskInstanceListForType component, 186

tasks

assigning to users, 177, 183-188

pooled, 187

starting and ending, 188-191
thirdparty-all.jar library, 23
transition child elements, 113-116
transitions, 102

in business process model, 160

conditional flow, 117-119

defining, 113, 116-121

flow, 106

in jBPM process model, 162
type stubs, 198, 207-209

u

update model values phase (JSF life
cycle), 71
user access, 128-130
advanced authorization, 153-156
component-level restrictions, 151-152
dynamic control, 153-154
page restrictions, 143-144
See also authentication services;
authorization services
user conversations, 68
user credentials, 134
User entity bean, 139-140
user events, conversations and, 75
user interactions, 193-194
User object, 184
user permissions, 127. See also
authorization
user roles, 131, 147-151
user sessions, subcontexts in, 68
userAdmin.saveUser() action listener
method, 101
users
assigning tasks to, 183-188
authorization of, 128
identification of, by jBPM, 184
roles, 131, 147-151

INDEX

vV

value attribute, @In annotation, 62—63
value attribute, @Out annotation, 64
variables, outjected, 180

view-id attribute, 104, 116

w

Web 2.0, 19

web archive (WAR) files, 23

web clients. See rich web clients

Web component configuration, 31-32
web features, optional, 32

web filters, 32

web interfaces, typical, 193

web page views, 106

WEB-INF directory, 34, 47
WEB-INF/lib directory, 29-30
@WebRemote annotation, 199, 202, 206
web.xml file, 46

workspace switcher, 96-97
workspaces, 90-98, 108

wrapper callback, 215

X
XML
configuring Seam components with,
46-47
XML files. See specific files
XML schema
references, 35

specifying, 27

Y
Yahoo! UI AJAX library, 214-215

229

I
=}
=%
=
—
&
177}
—
@
-
QO
—
=
=
=
=
172}
=
=}
@
=
=
=%
@
>
[
=}
=
@
1773
7
o
(=}
3
S~

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

